Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A concerted mechanism for berberine bridge enzyme

Abstract

Berberine bridge enzyme catalyzes the conversion of (S)-reticuline to (S)-scoulerine by formation of a carbon-carbon bond between the N-methyl group and the phenolic ring. We elucidated the structure of berberine bridge enzyme from Eschscholzia californica and determined the kinetic rates for three active site protein variants. Here we propose a catalytic mechanism combining base-catalyzed proton abstraction with concerted carbon-carbon coupling accompanied by hydride transfer from the N-methyl group to the N5 atom of the FAD cofactor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction and structure of BBE.

Similar content being viewed by others

References

  1. Steffens, P., Nagakura, N. & Zenk, M.H. Phytochem. 24, 2577–2583 (1985).

    Article  CAS  Google Scholar 

  2. Kutchan, T.M. & Dittrich, H. J. Biol. Chem. 270, 24475–24481 (1995).

    Article  CAS  Google Scholar 

  3. Edmondson, D.E., Binda, C. & Mattevi, A. Arch. Biochem. Biophys. 464, 269–276 (2007).

    Article  CAS  Google Scholar 

  4. Scrutton, N.S. Nat. Prod. Rep. 21, 722–730 (2004).

    Article  CAS  Google Scholar 

  5. Fitzpatrick, P.F. Bioorg. Chem. 32, 125–139 (2004).

    Article  CAS  Google Scholar 

  6. Winkler, A., Hartner, F., Kutchan, T.M., Glieder, A. & Macheroux, P. J. Biol. Chem. 281, 21276–21285 (2006).

    Article  CAS  Google Scholar 

  7. Huang, C.-H. et al. J. Biol. Chem. 280, 38831–38838 (2005).

    Article  CAS  Google Scholar 

  8. Alexeev, I., Sultana, A., Mantsala, P., Niemi, J. & Schneider, G. Proc. Natl. Acad. Sci. USA 104, 6170–6175 (2007).

    Article  CAS  Google Scholar 

  9. Heuts, D.P.H.M., Winter, R.T., Damsma, G.E., Janssen, D.B. & Fraaije, M.W. Biochem. J. 413, 175–183 (2008).

    Article  CAS  Google Scholar 

  10. Rand, T., Qvist, K.B., Walter, C.P. & Poulsen, C.H. FEBS J. 273, 2693–2703 (2006).

    Article  CAS  Google Scholar 

  11. Harayama, T., Tezuka, Y., Taga, T. & Yoneda, F. J. Chem. Soc. [Perkin 1] 75–83 (1987).

  12. Iwata, M., Bruice, T.C., Carrell, H.L. & Glusker, J.P. J. Am. Chem. Soc. 102, 5036–5044 (1980).

    Article  CAS  Google Scholar 

  13. Settembre, E.C. et al. Biochemistry 42, 2971–2981 (2003).

    Article  CAS  Google Scholar 

  14. Malito, E., Coda, A., Bilyeu, K.D., Fraaije, M.W. & Mattevi, A. J. Mol. Biol. 341, 1237–1249 (2004).

    Article  CAS  Google Scholar 

  15. Miller, J.R. & Edmondson, D.E. Biochemistry 38, 13670–13683 (1999).

    Article  CAS  Google Scholar 

  16. Bjorklund, J.A. et al. J. Am. Chem. Soc. 117, 1533–1545 (1995).

    Article  CAS  Google Scholar 

  17. Winkler, A., Kutchan, T.M. & Macheroux, P. J. Biol. Chem. 282, 24437–24443 (2007).

    Article  CAS  Google Scholar 

  18. Sirikantaramas, S. et al. J. Biol. Chem. 279, 39767–39774 (2004).

    Article  CAS  Google Scholar 

  19. Taura, F. et al. FEBS Lett. 581, 2929–2934 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the support of staff scientists at the synchrotron beamlines at DESY/EMBL-Hamburg during diffraction data collection and of Hansjörg Weber (Institute of Organic Chemistry, Graz University of Technology) for recording the NMR spectra. Financial support was provided by the Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen Forschung) through the Doktoratskolleg “Molecular enzymology” W901-B05 (to K.G. and P.M.).

Author information

Authors and Affiliations

Authors

Contributions

A.W., P.M. and K.G. designed experiments and analyzed results. A.W., P.M. and K.G. wrote the manuscript. A.W., A.L. and K.G. determined the crystal structures. A.W., S.R. and M.P. generated, expressed and purified mutant proteins. A.W. and M.P. performed enzyme kinetic experiments. T.M.K. prepared and provided special compounds and helped in editing the manuscript.

Corresponding authors

Correspondence to Sabrina Riedl or Karl Gruber.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1, Supplementary Discussion and Supplementary Methods (PDF 749 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, A., Łyskowski, A., Riedl, S. et al. A concerted mechanism for berberine bridge enzyme. Nat Chem Biol 4, 739–741 (2008). https://doi.org/10.1038/nchembio.123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing