Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Learning biological networks: from modules to dynamics

Abstract

Learning regulatory networks from genomics data is an important problem with applications spanning all of biology and biomedicine. Functional genomics projects offer a cost-effective means of greatly expanding the completeness of our regulatory models, and for some prokaryotic organisms they offer a means of learning accurate models that incorporate the majority of the genome. There are, however, several reasons to believe that regulatory network inference is beyond our current reach, such as (i) the combinatorics of the problem, (ii) factors we can't (or don't often) collect genome-wide measurements for and (iii) dynamics that elude cost-effective experimental designs. Recent works have demonstrated the ability to reconstruct large fractions of prokaryotic regulatory networks from compendiums of genomics data; they have also demonstrated that these global regulatory models can be used to predict the dynamics of the transcriptome. We review an overall strategy for the reconstruction of global networks based on these results in microbial systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Network inference workflow.
Figure 2: Context likelihood relatedness significance calculation.
Figure 3: The Inferelator.

Similar content being viewed by others

References

  1. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    CAS  PubMed  Google Scholar 

  2. Baliga, N.S. et al. Genomic and genetic dissection of an archaeal regulon. Proc. Natl. Acad. Sci. USA 98, 2521–2525 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Barrett, C.L. et al. Systems biology as a foundation for genome-scale synthetic biology. Curr. Opin. Biotechnol. 17, 488–492 (2006).

    CAS  PubMed  Google Scholar 

  4. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    CAS  PubMed  Google Scholar 

  5. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    CAS  PubMed  Google Scholar 

  6. Tirosh, I., Bilu, Y. & Barkai, N. Comparative biology: beyond sequence analysis. Curr. Opin. Biotechnol. 18, 371–377 (2007).

    CAS  PubMed  Google Scholar 

  7. Reiss, D.J., Baliga, N.S. & Bonneau, R. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 7, 280 (2006).

    PubMed  PubMed Central  Google Scholar 

  8. Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370–377 (2002).

    CAS  PubMed  Google Scholar 

  9. Gunsalus, K.C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436, 861–865 (2005).

    CAS  PubMed  Google Scholar 

  10. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, e328 (2004).

    PubMed  PubMed Central  Google Scholar 

  11. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    CAS  PubMed  Google Scholar 

  12. Facciotti, M.T. et al. General transcription factor specified global gene regulation in archaea. Proc. Natl. Acad. Sci. USA 104, 4630–4635 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmid, C.D. & Bucher, P. ChIP-Seq data reveal nucleosome architecture of human promoters. Cell 131, 831–832 (2007).

    CAS  PubMed  Google Scholar 

  14. Mardis, E.R. ChIP-seq: welcome to the new frontier. Nat. Methods 4, 613–614 (2007).

    CAS  PubMed  Google Scholar 

  15. Deplancke, B. et al. A gateway-compatible yeast one-hybrid system. Genome Res. 14, 2093–2101 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. De Jong, H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002).

    CAS  PubMed  Google Scholar 

  17. Alm, E. & Arkin, A.P. Biological networks. Curr. Opin. Struct. Biol. 13, 193–202 (2003).

    CAS  PubMed  Google Scholar 

  18. Herrgard, M.J., Covert, M.W. & Palsson, B.O. Reconstruction of microbial transcriptional regulatory networks. Curr. Opin. Biotechnol. 15, 70–77 (2004).

    CAS  PubMed  Google Scholar 

  19. Bansal, M. et al. How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007).

    PubMed  PubMed Central  Google Scholar 

  20. Hayete, B., Gardner, T.S. & Collins, J.J. Size matters: network inference tackles the genome scale. Mol. Syst. Biol. 3, 77 (2007).

    PubMed  PubMed Central  Google Scholar 

  21. Shmulevich, I. & Kauffman, S.A. Activities and sensitivities in boolean network models. Phys. Rev. Lett. 93, 048701 (2004).

    PubMed  PubMed Central  Google Scholar 

  22. Friedman, N. et al. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000).

    CAS  PubMed  Google Scholar 

  23. Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21, 1337–1342 (2003).

    CAS  PubMed  Google Scholar 

  24. Segal, E. et al. Rich probabilistic models for gene expression. Bioinformatics 17 (suppl. 1), S243–S252 (2001).

    PubMed  Google Scholar 

  25. Segal, E., Yelensky, R. & Koller, D. Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics 19 (suppl. 1), i273–i282 (2003).

    PubMed  Google Scholar 

  26. Stuart, J.M. et al. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    CAS  PubMed  Google Scholar 

  27. Pe'er, D. et al. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 (suppl. 1), S215–S224 (2001).

    PubMed  Google Scholar 

  28. Box, G.E.P. & Tiao, G.C. Bayesian Inference in Statistical Analysis (Wiley-Interscience, New York, 1992).

    Google Scholar 

  29. Pearl, J. Causality: Models, Reasoning, and Inference 8th ed. (Cambridge University Press, Cambridge, UK, 2001).

    Google Scholar 

  30. D'Haeseleer, P. et al. Linear modeling of mRNA expression levels during CNS development and injury. Pac. Symp. Biocomput. 1999, 41–52 (1999).

    Google Scholar 

  31. Weaver, D.C., Workman, C.T. & Stormo, G.D. Modeling regulatory networks with weight matrices. Pac. Symp. Biocomput. 1999, 112–123 (1999).

    Google Scholar 

  32. van Someren, E.P. et al. Genetic network modeling. Pharmacogenomics 3, 507–525 (2002).

    CAS  PubMed  Google Scholar 

  33. van Someren, E.P., Wessels, L.F. & Reinders, M.J. Linear modeling of genetic networks from experimental data. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 355–366 (2000).

    CAS  PubMed  Google Scholar 

  34. Hastie, T., Tibshirani, R. & Friedman, J.H. The Elements of Statistical Learning (Springer-Verlag, New York, 2001).

    Google Scholar 

  35. Flaherty, P., Jordan, M.I. & Arkin, A. Robust design of biological experiments. Proc. Neural Inf. Process. Symp. 18, 363–370 (2005).

    Google Scholar 

  36. Fisher, R.A. Statistical Methods, Experimental Design and Scientific Inference (Oxford University Press, Oxford, 1935).

    Google Scholar 

  37. Atkinson, A.C. & Donev, A.N. Optimum Experimental Designs (Oxford University Press, Oxford, 1992).

    Google Scholar 

  38. Box, G.E.P., Hunter, W.G. & Hunter, J.S. Statistics for Experimenters (John Wiley & Sons, New York, 1978).

    Google Scholar 

  39. Baliga, N.S. et al. Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res. 14, 1025–1035 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanay, A., Sharan, R. & Shamir, R. Discovering statistically significant biclusters in gene expression data. Bioinformatics 18 (suppl. 1), S136–S144 (2002).

    PubMed  Google Scholar 

  41. Sheng, Q., Moreau, Y. & De Moor, B. Biclustering microarray data by Gibbs sampling. Bioinformatics 19 (suppl. 2), II196–II205 (2003).

    PubMed  Google Scholar 

  42. Shamir, R. et al. EXPANDER–an integrative program suite for microarray data analysis. BMC Bioinformatics 6, 232 (2005).

    PubMed  PubMed Central  Google Scholar 

  43. Prelic, A. et al. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006).

    CAS  PubMed  Google Scholar 

  44. Lee, H., Kong, S.W. & Park, P.J. Integrative analysis reveals the direct and indirect interactions between DNA copy number aberrations and gene expression changes. Bioinformatics 24, 889–896 (2008).

    CAS  PubMed  Google Scholar 

  45. Kluger, Y. et al. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13, 703–716 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Grothaus, G.A., Mufti, A. & Murali, T.M. Automatic layout and visualization of biclusters. Algorithms Mol. Biol. 1, 15 (2006).

    PubMed  PubMed Central  Google Scholar 

  47. Cheng, Y. & Church, G.M. Biclustering of expression data. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 93–103 (2000).

    CAS  PubMed  Google Scholar 

  48. Mellor, J.C. et al. Predictome: a database of putative functional links between proteins. Nucleic Acids Res. 30, 306–309 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bowers, P.M. et al. Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol. 5, R35 (2004).

    PubMed  PubMed Central  Google Scholar 

  50. Price, M.N. et al. A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res. 33, 880–892 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Faith, J.J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. Margolin, A.A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 (suppl. 1), S7 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. Salgado, H. et al. RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 34, D394–D397 (2006).

    CAS  PubMed  Google Scholar 

  54. Vance, W., Arkin, A. & Ross, J. Determination of causal connectivities of species in reaction networks. Proc. Natl. Acad. Sci. USA 99, 5816–5821 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Arkin, A. & Ross, J. Statistical construction of chemical reaction mechanism from measured time series. J. Phys. Chem. 99, 970–979 (1995).

    CAS  Google Scholar 

  56. Dewey, T.G. & Galas, D.J. Dynamic models of gene expression and classification. Funct. Integr. Genomics 1, 269–278 (2001).

    CAS  PubMed  Google Scholar 

  57. Ramsey, S.A. et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput. Biol. 4, e1000021 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Shi, Y., Mitchell, T. & Bar-Joseph, Z. Inferring pairwise regulatory relationships from multiple time series datasets. Bioinformatics 23, 755–763 (2007).

    CAS  PubMed  Google Scholar 

  59. Gardner, T.S. et al. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003).

    CAS  PubMed  Google Scholar 

  60. Tegner, J. et al. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. USA 100, 5944–5949 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yeung, M.K., Tegner, J. & Collins, J.J. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99, 6163–6168 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bonneau, R. et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7, R36 (2006).

    PubMed  PubMed Central  Google Scholar 

  63. Bonneau, R. et al. A predictive model for transcriptional control of physiology in a free living cell. Cell 131, 1354–1365 (2007).

    CAS  PubMed  Google Scholar 

  64. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    CAS  PubMed  Google Scholar 

  65. Gustafsson, M., Hornquist, M. & Lombardi, A. Constructing and analyzing a large-scale gene-to-gene regulatory network–lasso-constrained inference and biological validation. IEEE/ACM Trans. Comput. Biol. Bioinform. 2, 254–261 (2005).

    CAS  PubMed  Google Scholar 

  66. Kaur, A. et al. A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res. 16, 841–854 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Whitehead, K. et al. An integrated systems approach for understanding cellular responses to gamma radiation. Mol. Syst. Biol. 2, 47 (2006).

    PubMed  PubMed Central  Google Scholar 

  68. Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. Least angle regression. Ann. Stat. 32, 407–499 (2004).

    Google Scholar 

  69. Goo, Y.A. et al. Proteomic analysis of an extreme halophilic Archaeon, Halobacterium sp. NRC-1. Mol. Cell. Proteomics 2, 506–524 (2003).

    CAS  PubMed  Google Scholar 

  70. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    CAS  PubMed  Google Scholar 

  71. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    CAS  PubMed  Google Scholar 

  72. Zhang, H. et al. UniPep, a database for human N-linked glycosites: a resource for biomarker discovery. Genome Biol. 7, R73 (2006).

    PubMed  PubMed Central  Google Scholar 

  73. Hoefgen, R. & Nikiforova, V.J. Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Physiol. Plant. 132, 190–198 (2008).

    CAS  PubMed  Google Scholar 

  74. Weckwerth, W. Integration of metabolomics and proteomics in molecular plant physiology–coping with the complexity by data-dimensionality reduction. Physiol. Plant. 132, 176–189 (2008).

    CAS  PubMed  Google Scholar 

  75. Gomase, V.S. et al. Metabolomics. Curr. Drug Metab. 9, 89–98 (2008).

    CAS  PubMed  Google Scholar 

  76. Price, N.D., Reed, J.L. & Palsson, B.O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004).

    CAS  PubMed  Google Scholar 

  77. Reed, J.L. et al. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54 (2003).

    PubMed  PubMed Central  Google Scholar 

  78. Covert, M.W. & Palsson, B.O. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058–28064 (2002).

    CAS  PubMed  Google Scholar 

  79. Hunt, D.E. et al. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081–1085 (2008).

    CAS  PubMed  Google Scholar 

  80. Pignatelli, M. et al. Metagenomics reveals our incomplete knowledge of global diversity. Bioinformatics 24, 2124–2125 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Blow, N. Metagenomics: exploring unseen communities. Nature 453, 687–690 (2008).

    CAS  PubMed  Google Scholar 

  82. Schnappinger, D. Genomics of host-pathogen interactions. Prog. Drug Res. 64, 313–343 (2007).

    Google Scholar 

Download references

Acknowledgements

We thank E. Vanden-Eijnden, D. Reiss, A. Madar, N. Baliga, B. Church and P. Waltman. We thank D. Shasha and the anonymous reviewers for detailed and insightful comments. R.B. is supported by the US National Science Foundation (DBI-0820757), the US Department of Energy GTL program and the US Department of Defense Computing and Society program.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonneau, R. Learning biological networks: from modules to dynamics. Nat Chem Biol 4, 658–664 (2008). https://doi.org/10.1038/nchembio.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing