Chemical probes are critical tools for elucidating the biological functions of proteins and can lead to new medicines for treating disease. The pharmacological validation of protein function requires verification that chemical probes engage their intended targets in vivo. Here we discuss technologies, both established and emergent, for measuring target engagement in living systems and propose that determining this parameter should become standard practice for chemical probe and drug discovery programs.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Examining the Feasibility of Quantifying Receptor Availability Using Cross-Modality Paired-Agent Imaging
Molecular Imaging and Biology Open Access 20 July 2021
-
Chemical genetics strategy to profile kinase target engagement reveals role of FES in neutrophil phagocytosis
Nature Communications Open Access 25 June 2020
-
An isothermal shift assay for proteome scale drug-target identification
Communications Biology Open Access 14 February 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Weiss, W.A., Taylor, S.S. & Shokat, K.M. Nat. Chem. Biol. 3, 739–744 (2007).
Grimwood, S. & Hartig, P.R. Pharmacol. Ther. 122, 281–301 (2009).
Krishna, R., Herman, G. & Wagner, J.A. AAPS J. 10, 401–409 (2008).
Wong, D.F., Tauscher, J. & Grunder, G. Neuropsychopharmacology 34, 187–203 (2009).
Matthews, P.M., Rabiner, E.A., Passchier, J. & Gunn, R.N. Br. J. Clin. Pharmacol. 73, 175–186 (2012).
Wagner, J.A. Annu. Rev. Pharmacol. Toxicol. 48, 631–651 (2008).
Shelat, A.A. & Guy, R.K. Nat. Chem. Biol. 3, 442–446 (2007).
Inglese, J. et al. Nat. Chem. Biol. 3, 466–479 (2007).
Bigott-Hennkens, H.M., Dannoon, S., Lewis, M.R. & Jurisson, S.S. Q. J. Nucl. Med. Mol. Imaging 52, 245–253 (2008).
Dormán, G. & Prestwich, G.D. Trends Biotechnol. 18, 64–77 (2000).
Halvorsen, S.W. & Berg, D.K. J. Neurosci. 7, 2547–2555 (1987).
Zhang, J., Yang, P.L. & Gray, N.S. Nat. Rev. Cancer 9, 28–39 (2009).
Paweletz, C.P. et al. PLoS ONE 6, e26459 (2011).
Bantscheff, M. et al. Nat. Biotechnol. 25, 1035–1044 (2007).
Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Annu. Rev. Biochem. 77, 383–414 (2008).
Nodwell, M.B. & Sieber, S.A. Top. Curr. Chem. 324, 1–41 (2012).
Patricelli, M.P. et al. Chem. Biol. 18, 699–710 (2011).
Kubota, K. et al. Nat. Biotechnol. 27, 933–940 (2009).
Stains, C.I. et al. Chem. Biol. 19, 210–217 (2012).
Bantscheff, M. et al. Nat. Biotechnol. 29, 255–265 (2011).
Liu, Y., Patricelli, M.P. & Cravatt, B.F. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).
Kato, D. et al. Nat. Chem. Biol. 1, 33–38 (2005).
Hsu, K.L. et al. Nat. Chem. Biol. 8, 999–1007 (2012).
Cohen, M.S., Hadjivassiliou, H. & Taunton, J. Nat. Chem. Biol. 3, 156–160 (2007).
Edgington, L.E. et al. J. Am. Chem. Soc. 135, 174–182 (2013).
Krysiak, J.M. et al. Angew. Chem. Int. Edn. Engl. 51, 7035–7040 (2012).
Verdoes, M. et al. Chem. Biol. 19, 619–628 (2012).
Rostovtsev, V.V., Green, J.G., Fokin, V.V. & Sharpless, K.B. Angew. Chem. Int. Edn. Engl. 41, 2596–2599 (2002).
Saxon, E. & Bertozzi, C.R. Science 287, 2007–2010 (2000).
Bachovchin, D.A. et al. Proc. Natl. Acad. Sci. USA 108, 6811–6816 (2011).
Geurink, P.P., Prely, L.M., van der Marel, G.A., Bischoff, R. & Overkleeft, H.S. Top. Curr. Chem. 324, 85–113 (2012).
Salisbury, C.M. & Cravatt, B.F. Proc. Natl. Acad. Sci. USA 104, 1171–1176 (2007).
Bradner, J.E. et al. Nat. Chem. Biol. 6, 238–243 (2010).
Tagore, D.M. et al. Nat. Chem. Biol. 5, 23–25 (2009).
Gross, R.W. & Han, X. Chem. Biol. 18, 284–291 (2011).
Need, A.B., McKinzie, J.H., Mitch, C.H., Statnick, M.A. & Phebus, L.A. Life Sci. 81, 1389–1396 (2007).
Lancelot, S. & Zimmer, L. Trends Pharmacol. Sci. 31, 411–417 (2010).
Long, J.Z. et al. Nat. Chem. Biol. 5, 37–44 (2009).
Ahn, K. et al. Chem. Biol. 16, 411–420 (2009).
Edgington, L.E., Verdoes, M. & Bogyo, M. Curr. Opin. Chem. Biol. 15, 798–805 (2011).
Edgington, L.E. et al. Nat. Med. 15, 967–973 (2009).
Choi, H.G. et al. ACS Med. Chem. Lett. 3, 658–662 (2012).
Adibekian, A. et al. J. Am. Chem. Soc. 134, 10345–10348 (2012).
Ashworth, S. et al. J. Nucl. Med. 51, 1021–1029 (2010).
Yokoi, F. et al. Neuropsychopharmacology 27, 248–259 (2002).
Erondu, N. et al. Cell Metab. 4, 275–282 (2006).
Adams, J. Cancer Cell 5, 417–421 (2004).
Arastu-Kapur, S. et al. Clin. Cancer Res. 17, 2734–2743 (2011).
Carmi, C., Mor, M., Petronini, P.G. & Alfieri, R.R. Biochem. Pharmacol. 84, 1388–1399 (2012).
Advani, R.H. et al. J. Clin. Oncol. 31, 88–94 (2013).
Honigberg, L.A. et al. Proc. Natl. Acad. Sci. USA 107, 13075–13080 (2010).
Ledford, H. Nature 483, 519 (2012).
Apsel, B. et al. Nat. Chem. Biol. 4, 691–699 (2008).
Skaddan, M.B. et al. Nucl. Med. Biol. 39, 1058–1067 (2012).
Das Thakur, M. et al. Nature 494, 251–255 (2013).
Wacker, S.A., Houghtaling, B.R., Elemento, O. & Kapoor, T.M. Nat. Chem. Biol. 8, 235–237 (2012).
Suwaki, N. et al. Sci. Transl. Med. 3, 85ra47 (2011).
Acknowledgements
We are grateful for the support of the US National Institutes of Health (CA087660, CA132630, DA033760 and DA032541) and the Skaggs Institute for Chemical Biology.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Simon, G., Niphakis, M. & Cravatt, B. Determining target engagement in living systems. Nat Chem Biol 9, 200–205 (2013). https://doi.org/10.1038/nchembio.1211
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.1211
This article is cited by
-
Quantifying lysosomal glycosidase activity within cells using bis-acetal substrates
Nature Chemical Biology (2022)
-
Examining the Feasibility of Quantifying Receptor Availability Using Cross-Modality Paired-Agent Imaging
Molecular Imaging and Biology (2022)
-
TRIPODD: a Novel Fluorescence Imaging Platform for In Situ Quantification of Drug Distribution and Therapeutic Response
Molecular Imaging and Biology (2021)
-
An isothermal shift assay for proteome scale drug-target identification
Communications Biology (2020)
-
Chemical genetics strategy to profile kinase target engagement reveals role of FES in neutrophil phagocytosis
Nature Communications (2020)