Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Network pharmacology: the next paradigm in drug discovery

Abstract

The dominant paradigm in drug discovery is the concept of designing maximally selective ligands to act on individual drug targets. However, many effective drugs act via modulation of multiple proteins rather than single targets. Advances in systems biology are revealing a phenotypic robustness and a network structure that strongly suggests that exquisitely selective compounds, compared with multitarget drugs, may exhibit lower than desired clinical efficacy. This new appreciation of the role of polypharmacology has significant implications for tackling the two major sources of attrition in drug development—efficacy and toxicity. Integrating network biology and polypharmacology holds the promise of expanding the current opportunity space for druggable targets. However, the rational design of polypharmacology faces considerable challenges in the need for new methods to validate target combinations and optimize multiple structure-activity relationships while maintaining drug-like properties. Advances in these areas are creating the foundation of the next paradigm in drug discovery: network pharmacology.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Human polypharmacology interactions network at ten-fold selectivity.
Figure 2: Expanding opportunity for drug discovery space with polypharmacology.
Figure 3: Protein kinase inhibitor promiscuity as a function of binding site sequence similarity.

References

  1. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004).

    CAS  Article  PubMed  Google Scholar 

  2. Sams-Dodd, F. Target-based drug discovery: is something wrong? Drug Discov. Today 10, 139–147 (2005).

    CAS  PubMed  Google Scholar 

  3. Kaufmann, S.H.E. Paul Ehrlich: founder of chemotherapy. Nat. Rev. Drug Discov. 7, 373 (2008).

    CAS  PubMed  Google Scholar 

  4. Zambrowicz, B.P. & Sands, A.T. Modeling drug action in the mouse with knockouts and RNA interference. Drug Discov. Today Targets 3, 198–207 (2004).

    CAS  Google Scholar 

  5. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  PubMed  Google Scholar 

  6. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    CAS  PubMed  Google Scholar 

  7. Deutschbauer, A.M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    CAS  PubMed  Google Scholar 

  9. Austin, C.P. et al. The knockout mouse project. Nat. Genet. 36, 921–924 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zambrowicz, B.P., Turner, C.A. & Sands, A.T. Predicting drug efficacy: knockouts model pipeline drugs of the pharmaceutical industry. Curr. Opin. Pharmacol. 3, 563–570 (2003).

    CAS  PubMed  Google Scholar 

  11. Zambrowicz, B.P. & Sands, A.T. Knockouts model the 100 best-selling drugs–will they model the next 100? Nat. Rev. Drug Discov. 2, 38–51 (2003).

    CAS  PubMed  Google Scholar 

  12. Kitano, H. Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007).

    PubMed  PubMed Central  Google Scholar 

  13. Barabási, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    PubMed  Google Scholar 

  14. Albert, R., Jeong, H. & Barabasi, A.L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    CAS  PubMed  Google Scholar 

  15. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Csermely, P., Agoston, V. & Pongor, S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci. 26, 178–182 (2005).

    CAS  PubMed  Google Scholar 

  17. Korcsmáros, T., Szalay, M.S., Böde, C., Kovács, I. & Csermely, P. How to design multi-target drugs: target search options in cellular networks. Expert Opin. Drug Discov. 2, 1–10 (2007).

    Google Scholar 

  18. Ooi, S.L. et al. Global synthetic-lethality analysis and yeast functional profiling. Trends Genet. 22, 56–63 (2006).

    CAS  PubMed  Google Scholar 

  19. Hillenmeyer, M.E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    CAS  PubMed  Google Scholar 

  21. Wermuth, C.G. Multitarget drugs: the end of the 'one-target-one-disease' philosophy? Drug Discov. Today 9, 826–827 (2004).

    PubMed  Google Scholar 

  22. Keith, C.T., Borisy, A.A. & Stockwel, B.R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4, 71–78 (2005).

    CAS  PubMed  Google Scholar 

  23. Petrelli, A. & Giordano, S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem. 15, 422–432 (2008).

    CAS  PubMed  Google Scholar 

  24. Mencher, S.K. & Wang, L.G. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin. Pharmacol. 5, 3 (2005).

    PubMed  PubMed Central  Google Scholar 

  25. Hopkins, A.L., Mason, J.S. & Overington, J.P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 16, 127–136 (2006).

    CAS  PubMed  Google Scholar 

  26. Flordellis, C.S., Manolis, A.S., Paris, H. & Karabinis, A. Rethinking target discovery in polygenic diseases. Curr. Top. Med. Chem. 6, 1791–1798 (2006).

    CAS  PubMed  Google Scholar 

  27. Dessalew, N. & Workalemahu, M. On the paradigm shift towards multitarget selective drug design. Curr. Comput. Aided Drug Des. 4, 76–90 (2008).

    CAS  Google Scholar 

  28. Keskin, O., Gursoy, A., Ma, B. & Nussinov, R. Towards drugs targeting multiple proteins in a systems biology approach. Curr. Top. Med. Chem. 7, 943–951 (2007).

    CAS  PubMed  Google Scholar 

  29. Zimmermann, G.R., Lehár, J. & Keith, C.T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).

    CAS  PubMed  Google Scholar 

  30. McGovern, S.L., Caselli, E., Grigorieff, N. & Shoichet, B.K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem. 45, 1712–1722 (2002).

    CAS  PubMed  Google Scholar 

  31. Kerkelä, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat. Med. 12, 908–916 (2006).

    PubMed  Google Scholar 

  32. Kaelin, W.G., Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    CAS  PubMed  Google Scholar 

  33. Gascoigne, K.E. & Taylor, S.S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).

    CAS  PubMed  Google Scholar 

  34. Whitehurst, A.W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819 (2007).

    CAS  PubMed  Google Scholar 

  35. Turner, N.C. et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gupta, G.P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    CAS  PubMed  Google Scholar 

  37. Eltarhouny, S.A. et al. Genes controlling spread of breast cancer to lung “gang of 4”. Exp. Oncol. 30, 91–95 (2008).

    CAS  PubMed  Google Scholar 

  38. Kitano, H. A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Discov. 6, 202–210 (2007).

    CAS  PubMed  Google Scholar 

  39. Bond, R.A. Can intellectualism stifle scientific discovery? Nat. Rev. Drug Discov. 1, 825–829 (2002).

    CAS  PubMed  Google Scholar 

  40. Dudekula, N., Arora, V., Callaerts-Vegh, Z. & Bond, R.A. The temporal hormesis of drug therapies. Dose Response 3, 414–424 (2006).

    PubMed  PubMed Central  Google Scholar 

  41. Schwartz, G.K. & Shah, M.A. Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408–9421 (2005).

    CAS  PubMed  Google Scholar 

  42. Mills, S.D. When will the genomics investment pay off for antibacterial discovery? Biochem. Pharmacol. 71, 1096–1102 (2006).

    CAS  PubMed  Google Scholar 

  43. Pucci, M.J. Use of genomics to select antibacterial targets. Biochem. Pharmacol. 71, 1066–1072 (2006).

    CAS  PubMed  Google Scholar 

  44. Payne, D.J., Gwynn, M.N., Holmes, D.J. & Rosenberg, M. Genomic approaches to antibacterial discovery. Methods Mol. Biol. 266, 231–259 (2004).

    CAS  PubMed  Google Scholar 

  45. Payne, D.J., Gwynn, M.N., Holmes, D.J. & Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    CAS  PubMed  Google Scholar 

  46. Lange, R.P., Locher, H.H., Wyss, P.C. & Then, R.L. The targets of currently used antibacterial agents: lessons for drug discovery. Curr. Pharm. Des. 13, 3140–3154 (2007).

    CAS  PubMed  Google Scholar 

  47. Denome, S.A., Elf, P.K., Henderson, T.A., Nelson, D.E. & Young, K.D. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181, 3981–3993 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Janoir, C., Zeller, V., Kitzis, M.D., Moreau, N.J. & Gutmann, L. High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob. Agents Chemother. 40, 2760–2764 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramaswamy, S. Rational design of cancer-drug combinations. N. Engl. J. Med. 357, 299–300 (2007).

    CAS  PubMed  Google Scholar 

  50. Mayer, L.D. & Janoff, A.S. Optimizing combination chemotherapy by controlling drug ratios. Mol. Interv. 7, 216–223 (2007).

    CAS  PubMed  Google Scholar 

  51. Dancey, J.E. & Chen, H.X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 5, 649–659 (2006).

    CAS  PubMed  Google Scholar 

  52. Borisy, A.A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. USA 100, 7977–7982 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Radhakrishnan, M.L. & Tidor, B. Optimal drug cocktail design: methods for targeting molecular ensembles and insights from theoretical model systems. J. Chem. Inf. Model. 48, 1055–1073 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsui, I.F., Chari, R., Buys, T.P. & Lam, W.L. Public databases and software for the pathway analysis of cancer genomes. Cancer Inform. 3, 389–407 (2007).

    Google Scholar 

  55. Swanson, D.R. Medical literature as a potential source of new knowledge. Bull. Med. Libr. Assoc. 78, 29–37 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wren, J.D., Bekeredjian, R., Stewart, J.A., Shohet, R.V. & Garner, H.R. Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics 20, 389–398 (2004).

    CAS  PubMed  Google Scholar 

  57. Bekhuis, T. Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy. Biomed. Digit. Libr. 3, 2 (2006).

    PubMed  PubMed Central  Google Scholar 

  58. Loging, W., Harland, L. & Williams-Jones, B. High-throughput electronic biology: mining information for drug discovery. Nat. Rev. Drug Discov. 6, 220–230 (2007).

    CAS  PubMed  Google Scholar 

  59. Peirce, C.S. The Essential Peirce Vol. 2 (Indiana University Press, Bloomington, Indiana, USA, 1998).

  60. Kell, D.B. & Oliver, S.G. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26, 99–105 (2004).

    PubMed  Google Scholar 

  61. Latora, V. & Marchiori, M. Vulnerability and protection of infrastructure networks. Phys. Rev. E 71, 015103R (2005).

    Google Scholar 

  62. Jeong, H., Mason, S.P., Barabási, A.L. & Oltvai, Z.N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    CAS  PubMed  Google Scholar 

  63. Coulomb, S., Bauer, M., Bernard, D. & Marsolier-Kergoat, M.C. Gene essentiality and the topology of protein interaction networks. Proc. Biol. Sci. 272, 1721–1725 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Joy, M.P., Brock, A., Ingber, D.E. & Huang, S. High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2, 96–103 (2005).

    Google Scholar 

  65. Yu, H., Kim, P.M., Sprecher, E., Trifonov, V. & Gerstein, M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3, e59 (2007).

    PubMed  PubMed Central  Google Scholar 

  66. Hwang, W.C., Zhang, A. & Ramanathan, M. Identification of information flow-modulating drug targets: a novel bridging paradigm for drug discovery. Clin. Pharmacol. Ther. published online, doi:10.1038/clpt.2008.129 (9 July 2008).

    CAS  Google Scholar 

  67. Hahn, M.W. & Kern, A.D. Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803–806 (2005).

    CAS  PubMed  Google Scholar 

  68. Han, J.D. et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93 (2004).

    CAS  PubMed  Google Scholar 

  69. Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabási, A.L. & Vidal, M. Drug-target network. Nat. Biotechnol. 25, 1119–1126 (2007).

    CAS  PubMed  Google Scholar 

  70. Nacher, J.C. & Schwartz, J.M. A global view of drug-therapy interactions. BMC Pharmacol. 8, 5 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. Motter, A.E., Nishikawa, T. & Lai, Y. Range-based attack on links in scale-free networks: are long-range links responsible for the small-world phenomenon? Phys. Rev. E 66, 065103 (2002).

    Google Scholar 

  72. Moriya, H., Shimizu-Yoshida, Y. & Kitano, H. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet. 2, e111 (2006).

    PubMed  PubMed Central  Google Scholar 

  73. Wunderlich, Z. & Mirny, L.A. Using the topology of metabolic networks to predict viability of mutant strains. Biophys. J. 91, 2304–2311 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kovacs, I., Csermely, P., Korcsmaros, T. & Szalay, M. WO patent application WO 2007-IB50471 2007 0213 (2007).

  75. Watterson, S., Marshall, S. & Ghazal, P. Logic models of pathway biology. Drug Discov. Today 13, 447–456 (2008).

    CAS  PubMed  Google Scholar 

  76. Gerber, S., Assmus, H., Bakker, B. & Klipp, E. Drug-efficacy depends on the inhibitor type and the target position in a metabolic network—a systematic study. J. Theor. Biol. 252, 442–455 (2008).

    CAS  PubMed  Google Scholar 

  77. Potapov, A.P., Goemann, B. & Wingender, E. The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks. BMC Bioinformatics 9, 227 (2008).

    PubMed  PubMed Central  Google Scholar 

  78. Agoston, V., Csermely, P. & Pongor, S. Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example. Phys. Rev. E 71, 051909 (2005).

    Google Scholar 

  79. Motter, A.E., Gulbahce, N., Almaas, E. & Barabási, A.L. Predicting synthetic rescues in metabolic networks. Mol. Syst. Biol. 4, 168 (2008).

    PubMed  PubMed Central  Google Scholar 

  80. Leeson, P.D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890 (2007).

    CAS  PubMed  Google Scholar 

  81. Morphy, R., Kay, C. & Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today 9, 641–651 (2004).

    CAS  PubMed  Google Scholar 

  82. Morphy, R. & Rankovic, Z. The physicochemical challenges of designing multiple ligands. J. Med. Chem. 49, 4961–4970 (2006).

    CAS  PubMed  Google Scholar 

  83. Hopkins, A.L. et al. Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase with improved drug resistance properties. 1. J. Med. Chem. 47, 5912–5922 (2004).

    CAS  PubMed  Google Scholar 

  84. Hann, M.M., Leach, A.R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (2001).

    CAS  PubMed  Google Scholar 

  85. Leach, A.R., Hann, M.M., Burrows, J.N. & Griffen, E.J. Fragment screening: an introduction. Mol. Biosyst. 2, 430–446 (2006).

    PubMed  Google Scholar 

  86. Hopkins, A.L., Groom, C.R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004).

    PubMed  Google Scholar 

  87. Morphy, R. & Rankovic, Z. Fragments, network biology and designing multiple ligands. Drug Discov. Today 12, 156–160 (2007).

    CAS  PubMed  Google Scholar 

  88. Neumann, T., Junker, H.D., Schmidt, K. & Sekul, R. SPR-based fragment screening: advantages and applications. Curr. Top. Med. Chem. 7, 1630–1642 (2007).

    CAS  PubMed  Google Scholar 

  89. Hämäläinen, M.D. et al. Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels. J. Biomol. Screen. 13, 202–209 (2008).

    PubMed  Google Scholar 

  90. Paolini, G.V., Shapland, R.H., van Hoorn, W.P., Mason, J.S. & Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).

    CAS  PubMed  Google Scholar 

  91. Wermuth, C.G. Selective optimization of side activities: another way for drug discovery. J. Med. Chem. 47, 1303–1314 (2004).

    CAS  PubMed  Google Scholar 

  92. Wermuth, C.G. Selective optimization of side activities: the SOSA approach. Drug Discov. Today 11, 160–164 (2006).

    CAS  PubMed  Google Scholar 

  93. Millan, M. Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol. Ther. 110, 135–370 (2006).

    CAS  PubMed  Google Scholar 

  94. Ji, H.F. et al. Distribution patterns of small-molecule ligands in the protein universe and implications for origin of life and drug discovery. Genome Biol. 8, R176 (2007).

    PubMed  PubMed Central  Google Scholar 

  95. Park, K. & Kim, D. Binding similarity network of ligand. Proteins 71, 960–971 (2008).

    CAS  PubMed  Google Scholar 

  96. Kuhn, M., von Mering, C., Campillos, M., Jensen, L.J. & Bork, P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 36, D684–D688 (2008).

    CAS  PubMed  Google Scholar 

  97. Günther, S. et al. SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36, D919–D922 (2008).

    PubMed  Google Scholar 

  98. Spiro, Z., Kovacs, I.A. & Csermely, P. Drug-therapy networks and the prediction of novel drug targets. J. Biol. 7, 20 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Bonchev, D. & Buck, G.A. From molecular to biological structure and back. J. Chem. Inf. Model. 47, 909–917 (2007).

    CAS  PubMed  Google Scholar 

  100. Keiser, M.J. et al. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25, 197–206 (2007).

    CAS  PubMed  Google Scholar 

  101. Hert, J., Keiser, M., Irwin, J., Oprea, T. & Shoichet, B. Quantifying the relationships among drug classes. J. Chem. Inf. Model. 48, 755–765 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. & Kanehisa, M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232–i240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuhn, M., Campillos, M., González, P., Jensen, L.J. & Bork, P. Large-scale prediction of drug–target relationships. FEBS Lett. 582, 1283–1289 (2008).

    CAS  PubMed  Google Scholar 

  104. Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 263–266 (2008).

    CAS  PubMed  Google Scholar 

  105. Scott, M.S. & Barton, G.J. Probabilistic prediction and ranking of human protein-protein interactions. BMC Bioinformatics 8, 239 (2007).

    PubMed  PubMed Central  Google Scholar 

  106. Fliri, A.F., Loging, W.T., Thadeio, P.F. & Volkmann, R.A. Biospectra analysis: model proteome characterizations for linking molecular structure and biological response. J. Med. Chem. 48, 6918–6925 (2005).

    CAS  PubMed  Google Scholar 

  107. Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  108. Davies, J.R., Jackson, R.M., Mardia, K.V. & Taylor, C.C. The Poisson index: a new probabilistic model for protein ligand binding site similarity. Bioinformatics 23, 3001–3008 (2007).

    CAS  PubMed  Google Scholar 

  109. Baroni, M., Cruciani, G., Sciabola, S., Perruccio, F. & Mason, J.S. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP): theory and application. J. Chem. Inf. Model. 47, 279–294 (2007).

    CAS  PubMed  Google Scholar 

  110. Zhang, Z. & Grigorov, M.G. Similarity networks of protein binding sites. Proteins 62, 470–478 (2006).

    CAS  PubMed  Google Scholar 

  111. Zhang, X., Crespo, A. & Fernández, A. Turning promiscuous kinase inhibitors into safer drugs. Trends Biotechnol. 26, 295–301 (2008).

    PubMed  Google Scholar 

  112. Aronov, A.M., McClain, B., Moody, C.S. & Murcko, M.A. Kinase-likeness and kinase-privileged fragments: toward virtual polypharmacology. J. Med. Chem. 51, 1214–1222 (2008).

    CAS  PubMed  Google Scholar 

  113. Jenwitheesuk, E., Horst, J.A., Rivas, K.L., Van Voorhis, W.C. & Samudrala, R. Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol. Sci. 29, 62–71 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Van Gestel, S. & Schuermans, V. Thirty-three years of drug discovery and research with Dr. Paul Janssen. Drug Dev. Res. 8, 1–13 (1986).

    CAS  Google Scholar 

  115. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    CAS  PubMed  Google Scholar 

  116. Fabian, M.A. et al. A small molecule−kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    CAS  PubMed  Google Scholar 

  117. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L Hopkins.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hopkins, A. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4, 682–690 (2008). https://doi.org/10.1038/nchembio.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.118

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing