Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photochemical activation of TRPA1 channels in neurons and animals

Abstract

Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild-type zebrafish and mice. To our surprise, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in nontransgenic animals, including humans.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Identification of optovin, a compound enabling light-mediated neuronal excitation.
Figure 2: Optovin structure-activity relationship analysis.
Figure 3: TRPA1 is necessary and sufficient for the optovin response.
Figure 4: Optovin activates TRPA1 via structure-dependent photochemical reactions.
Figure 5: Remote control of optovin-treated animals.

References

  1. Alexander, G.M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein–coupled receptors. Neuron 63, 27–39 (2009).

    Article  CAS  Google Scholar 

  2. Armbruster, B.N., Li, X., Pausch, M.H., Herlitze, S. & Roth, B.L. Evolving the lock to fit the key to create a family of G protein–coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

    Article  Google Scholar 

  3. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  Google Scholar 

  4. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  5. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  Google Scholar 

  6. Ferguson, S.M. et al. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 14, 22–24 (2011).

    Article  CAS  Google Scholar 

  7. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    Article  CAS  Google Scholar 

  8. Janovjak, H., Szobota, S., Wyart, C., Trauner, D. & Isacoff, E. A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat. Neurosci. 13, 1027–1032 (2010).

    Article  CAS  Google Scholar 

  9. Volgraf, M. et al. Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J. Am. Chem. Soc. 129, 260–261 (2007).

    Article  CAS  Google Scholar 

  10. Wang, S. et al. All optical interface for parallel, remote, and spatiotemporal control of neuronal activity. Nano Lett. 7, 3859–3863 (2007).

    Article  CAS  Google Scholar 

  11. Kwan, K.Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    Article  CAS  Google Scholar 

  12. Kramer, R.H., Fortin, D.L. & Trauner, D. New photochemical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 19, 544–552 (2009).

    Article  CAS  Google Scholar 

  13. Callaway, E.M. & Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 90, 7661–7665 (1993).

    Article  CAS  Google Scholar 

  14. Dalva, M.B. & Katz, L.C. Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. Science 265, 255–258 (1994).

    Article  CAS  Google Scholar 

  15. Fortin, D.L. et al. Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 10.1038/nmeth.1187 (2008).

    Article  CAS  Google Scholar 

  16. Fortin, D.L. et al. Optogenetic photochemical control of designer K+ channels in mammalian neurons. J. Neurophysiol. 106, 488–496 (2011).

    Article  CAS  Google Scholar 

  17. Noguchi, J. et al. In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J. Physiol. (Lond.) 589, 2447–2457 (2011).

    Article  CAS  Google Scholar 

  18. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    Article  CAS  Google Scholar 

  19. Wieboldt, R. et al. Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale. Proc. Natl. Acad. Sci. USA 91, 8752–8756 (1994).

    Article  CAS  Google Scholar 

  20. Mourot, A. et al. Rapid optical control of nociception with an ion-channel photoswitch. Nat. Methods 9, 396–402 (2012).

    Article  CAS  Google Scholar 

  21. Brain, S.D. TRPV1 and TRPA1 channels in inflammatory pain: elucidating mechanisms. Ann. NY Acad. Sci. 1245, 36–37 (2011).

    Article  Google Scholar 

  22. Jordt, S.E. & Ehrlich, B.E. TRP channels in disease. Subcell. Biochem. 45, 253–271 (2007).

    Article  CAS  Google Scholar 

  23. Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 (2010).

    Article  CAS  Google Scholar 

  24. Schwartz, E. S. et al. Synergistic role of TRPV1 and TRPA1 in pancreatic pain and inflammation. Gastroenterology 140, 1283–1291 (2011).

    Article  CAS  Google Scholar 

  25. MacRae, C.A. & Peterson, R.T. Zebrafish-based small molecule discovery. Chem. Biol. 10, 901–908 (2003).

    Article  CAS  Google Scholar 

  26. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  CAS  Google Scholar 

  27. Kokel, D. et al. Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat. Chem. Biol. 6, 231–237 (2010).

    Article  CAS  Google Scholar 

  28. Schmitt, E.A. & Dowling, J.E. Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J. Comp. Neurol. 404, 515–536 (1999).

    Article  CAS  Google Scholar 

  29. Rihel, J. et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327, 348–351 (2010).

    Article  CAS  Google Scholar 

  30. Dhaka, A., Viswanath, V. & Patapoutian, A. TRP ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006).

    Article  CAS  Google Scholar 

  31. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  Google Scholar 

  32. Moran, M.M., Xu, H. & Clapham, D.E. TRP ion channels in the nervous system. Curr. Opin. Neurobiol. 14, 362–369 (2004).

    Article  CAS  Google Scholar 

  33. Escalera, J., von Hehn, C.A., Bessac, B.F., Sivula, M. & Jordt, S.E. TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. J. Biol. Chem. 283, 24136–24144 (2008).

    Article  CAS  Google Scholar 

  34. Prober, D.A. et al. Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J. Neurosci. 28, 10102–10110 (2008).

    Article  CAS  Google Scholar 

  35. Eid, S.R. et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain 4, 48 (2008).

    Article  Google Scholar 

  36. Laustriat, G. Molecular mechanisms of photosensitization. Biochimie 68, 771–778 (1986).

    Article  CAS  Google Scholar 

  37. Ouannes, C. & Wilson, T. Quenching of singlet oxygen by tertiary aliphatic amines. Effect of DABCO (1,4-diazabicyclo [2.2.2]octane). J. Am. Chem. Soc. 90, 6527–6528 (1968).

    Article  CAS  Google Scholar 

  38. Macpherson, L.J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    Article  CAS  Google Scholar 

  39. Takahashi, N. et al. TRPA1 underlies a sensing mechanism for O2 . Nat. Chem. Biol. 7, 701–711 (2011).

    Article  CAS  Google Scholar 

  40. Hinman, A., Chuang, H.H., Bautista, D.M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl. Acad. Sci. USA 103, 19564–19568 (2006).

    Article  CAS  Google Scholar 

  41. Barton, H.J. & Bojarski, J.T. Photoinduced stereospecific formation of substituted hydantoin from hexobarbital. J. Photochem. Photobiol. A Chem. 54, 187–196 (1990).

    Article  CAS  Google Scholar 

  42. Marinado, T. et al. Rhodanine dyes for dye-sensitized solar cells: spectroscopy, energy levels and photovoltaic performance. Phys. Chem. Chem. Phys. 11, 133–141 (2009).

    Article  CAS  Google Scholar 

  43. Patch, R.J. et al. Identification of diaryl ether–based ligands for estrogen-related receptor alpha as potential antidiabetic agents. J. Med. Chem. 54, 788–808 (2011).

    Article  CAS  Google Scholar 

  44. Serafimova, I.M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8, 471–476 (2012).

    Article  CAS  Google Scholar 

  45. Herrou, J. & Crosson, S. Function, structure and mechanism of bacterial photosensory LOV proteins. Nat. Rev. Microbiol. 9, 713–723 (2011).

    Article  CAS  Google Scholar 

  46. Tegos, G.P. et al. Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivation. Antimicrob. Agents Chemother. 50, 1402–1410 (2006).

    Article  CAS  Google Scholar 

  47. Corne, S.J., Pickering, R.W. & Warner, B.T. A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 20, 106–120 (1963).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Kwan and D. Corey (Harvard Medical School), T. Miyamoto and A. Patapoutian (Scripps Research Institute), and T. Numata and Y. Mori (Kyoto University) for human TrpA1 constructs. A. Schier, D. Prober and D. Robson (Harvard University) generously provided TrpA1 mutant zebrafish. We thank R. Gaudet, A. Vakkasglu, B. Shoichet, T. Dunn, M. Ahrens, F. Engert, R. Mazitschek and members of our research groups for helpful advice. This work was supported by US National Institutes of Health (NIH) grants K01MH091449 (D.K.), MH086867 and MH085205 (R.T.P.), P01 NS072040 (C.J.W.), R01 AI050875 (L.H. and M.R.H.); the Charles and Ann Sanders Massachusetts General Hospital Research Scholar award (R.T.P.); and the Michael Hooker Chair and the NIMH PDSP (B.L.R.). M.J.Z. was supported by grants from National Institute of Neurological Disorders and Stroke (NINDS; R01NS060725, R01NS067688), J.C.-B. was supported by a National Research Service Award training grant from NINDS (F31NS068038) and D.J.M. was supported by NIH grants HL109004 and DA026982.

Author information

Authors and Affiliations

Authors

Contributions

D.K. designed and performed the research, analyzed the data and wrote the manuscript with R.T.P. C.Y.J.C., R.M., J.C.-B., L.H., V.S., J.S., S.J., Y.N.J., G.B. and X.-P.H. designed and performed the experiments and interpreted data. C.J.W., B.L.R., M.R.H., M.J.Z. and D.J.M. analyzed and interpreted the data. All authors contributed to data interpretation and commented on the manuscript.

Corresponding authors

Correspondence to David Kokel or Randall T Peterson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 3291 kb)

Supplementary Movie 1

Supplemenary Video 1 (MOV 1714 kb)

Supplementary Movie 2

Supplemenary Video 2 (MOV 3101 kb)

Supplementary Movie 3

Supplemenary Video 3 (MOV 374 kb)

Supplementary Movie 4

Supplemenary Video 4 (MOV 776 kb)

Supplementary Movie 5

Supplemenary Video 5 (MOV 14705 kb)

Supplementary Movie 6

Supplemenary Video 6 (MOV 8873 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kokel, D., Cheung, C., Mills, R. et al. Photochemical activation of TRPA1 channels in neurons and animals. Nat Chem Biol 9, 257–263 (2013). https://doi.org/10.1038/nchembio.1183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing