Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Gold biomineralization by a metallophore from a gold-associated microbe

Abstract

Microorganisms produce and secrete secondary metabolites to assist in their survival. We report that the gold resident bacterium Delftia acidovorans produces a secondary metabolite that protects from soluble gold through the generation of solid gold forms. This finding is the first demonstration that a secreted metabolite can protect against toxic gold and cause gold biomineralization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Delftia acidovorans produces a nonribosomal peptide that creates gold nanoparticles.
Figure 2: Delftibactin detoxifies soluble gold and enables growth in toxic AuCl3 concentrations.
Figure 3: Gold complexation by delftibactin leads to the creation of nontoxic solid gold particles.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Vining, L.C. Annu. Rev. Microbiol. 44, 395–427 (1990).

    Article  CAS  Google Scholar 

  2. Nies, D.H. Appl. Microbiol. Biotechnol. 51, 730–750 (1999).

    Article  CAS  Google Scholar 

  3. Reith, F., Rogers, S.L., McPhail, D.C. & Webb, D. Science 313, 233–236 (2006).

    Article  CAS  Google Scholar 

  4. Reith, F. et al. Geology 38, 843–846 (2010).

    Article  CAS  Google Scholar 

  5. Reith, F. et al. Proc. Natl. Acad. Sci. USA 106, 17757–17762 (2009).

    Article  CAS  Google Scholar 

  6. Reith, F., Lengke, M.F., Falconer, D., Craw, D. & Southam, G. ISME J. 1, 567–584 (2007).

    Article  CAS  Google Scholar 

  7. Kashefi, K., Tor, J.M., Nevin, K.P. & Lovely, D.R. Appl. Environ. Microbiol. 67, 3275–3279 (2001).

    Article  CAS  Google Scholar 

  8. Usher, A., McPhail, D.C. & Brugger, J. Geochim. Cosmochim. Acta 73, 3359–3380 (2009).

    Article  CAS  Google Scholar 

  9. Hider, R.C. & Kong, X. Nat. Prod. Rep. 27, 637–657 (2010).

    Article  CAS  Google Scholar 

  10. Kim, H.J. et al. Science 305, 1612–1615 (2004).

    Article  CAS  Google Scholar 

  11. Chaturvedi, K.S. et al. Nat. Chem. Biol. 8, 731–736 (2012).

    Article  CAS  Google Scholar 

  12. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. Chem. Biol. 6, 493–505 (1999).

    Article  CAS  Google Scholar 

  13. Diels, L., Dong, Q., van der Lelie, D., Baeyens, W. & Mergeay, M. J. Ind. Microbiol. 14, 142–153 (1995).

    Article  CAS  Google Scholar 

  14. Salem, I.B. et al. Ann. Microbiol. published online, 10.1007/s13213-012-0462-3 (2012).

  15. Miller, M.C. et al. Microbiology 156, 2226–2238 (2010).

    Article  CAS  Google Scholar 

  16. Hough, R.M. et al. Geology 36, 571–574 (2008).

    Article  CAS  Google Scholar 

  17. Ojea-Jiménez, I., Romero, F.M., Bastús, N.G. & Puntes, V. J. Phys. Chem. C 114, 1800–1804 (2010).

    Article  Google Scholar 

  18. Amin, S.A. et al. J. Am. Chem. Soc. 129, 478–479 (2007).

    Article  CAS  Google Scholar 

  19. Pinel, N., Davidson, S.K. & Stahl, D.A. Int. J. Syst. Evol. Microbiol. 58, 2147–2157 (2008).

    Article  CAS  Google Scholar 

  20. Weisburg, W.G., Barns, S.M., Pelletier, D.A. & Lane, D.J. J. Bacteriol. 173, 697–703 (1991).

    Article  CAS  Google Scholar 

  21. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D.H. Nucleic Acids Res. 33, 5799–5808 (2005).

    Article  CAS  Google Scholar 

  22. Ansari, M.Z., Yadav, G., Gokhale, R.S. & Mohanty, D. Nucleic Acids Res. 32, W405–W413 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded through Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery grants (RGPIN 371576-2009; 101997-2006), an NSERC Strategic grant (STPGP385235-09) and a Canadian Foundation for Innovation grant (2010M00022). M.A.W. is funded through a Canadian Institutes of Health (CIHR) Doctoral Research Award. N.A.M. is funded by a CIHR New Investigator Award.

Author information

Authors and Affiliations

Authors

Contributions

C.W.J. isolated delftibactins, constructed the genetically modified strain, performed gold experiments and contributed to study design. M.A.W. isolated delftibactins, performed gold experiments and contributed to study design. X.L. performed structural analysis. A.I. performed structural and MS/MS analysis and isolated delftibactin B. J.S. obtained transmission electron microscopy (TEM) images. G.S. performed TEM image analysis. N.A.M. contributed to study design and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Nathan A Magarvey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 881 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, C., Wyatt, M., Li, X. et al. Gold biomineralization by a metallophore from a gold-associated microbe. Nat Chem Biol 9, 241–243 (2013). https://doi.org/10.1038/nchembio.1179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing