Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Essential nontranslational functions of tRNA synthetases

This article has been updated


Nontranslational functions of vertebrate aminoacyl tRNA synthetases (aaRSs), which catalyze the production of aminoacyl-tRNAs for protein synthesis, have recently been discovered. Although these new functions were thought to be 'moonlighting activities', many are as critical for cellular homeostasis as their activity in translation. New roles have been associated with their cytoplasmic forms as well as with nuclear and secreted extracellular forms that affect pathways for cardiovascular development and the immune response and mTOR, IFN-γ and p53 signaling. The associations of aaRSs with autoimmune disorders, cancers and neurological disorders further highlight nontranslational functions of these proteins. New architecture elaborations of the aaRSs accompany their functional expansion in higher organisms and have been associated with the nontranslational functions for several aaRSs. Although a general understanding of how these functions developed is limited, the expropriation of aaRSs for essential nontranslational functions may have been initiated by co-opting the amino acid–binding site for another purpose.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The nontranslational functions of aaRSs.
Figure 2: Amino acid–binding pocket has a vital role in some of the nontranslational functions.
Figure 3: New domains that introduce and regulate nontranslational functions.
Figure 4: Multifaceted aaRSs scaffold proteins.
Figure 5: New functions of aaRS fragments.
Figure 6: Potential therapeutic interventions derived from aaRS nontranslational functions.

Change history

  • 22 February 2012

    In the version of this article initially published online, Min Guo's name was misspelled. The error has been corrected in the HTML version of the article.


  1. 1

    Carter, C.W. Jr. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62, 715–748 (1993).

    CAS  PubMed  Google Scholar 

  2. 2

    Ibba, M. & Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).

    CAS  PubMed  Google Scholar 

  3. 3

    Ryckelynck, M., Giegé, R. & Frugier, M. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations. Biochimie 87, 835–845 (2005).

    CAS  PubMed  Google Scholar 

  4. 4

    Putney, S.D. & Schimmel, P. An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription. Nature 291, 632–635 (1981).

    CAS  PubMed  Google Scholar 

  5. 5

    Sarkar, J., Poruri, K., Boniecki, M.T., McTavish, K.K. & Martinis, S.A. Yeast mitochondrial leucyl-tRNA synthetase CP1 domain has functionally diverged to accommodate RNA splicing at expense of hydrolytic editing. J. Biol. Chem. 287, 14772–14781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Paukstelis, P.J., Chen, J.H., Chase, E., Lambowitz, A.M. & Golden, B.L. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Nature 451, 94–97 (2008).

    CAS  PubMed  Google Scholar 

  7. 7

    Arnez, J.G. & Moras, D. Structural and functional considerations of the aminoacylation reaction. Trends Biochem. Sci. 22, 211–216 (1997).

    CAS  PubMed  Google Scholar 

  8. 8

    Torres-Larios, A., Sankaranarayanan, R., Rees, B., Dock-Bregeon, A.C. & Moras, D. Conformational movements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNA synthetase. J. Mol. Biol. 331, 201–211 (2003).

    CAS  PubMed  Google Scholar 

  9. 9

    Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Wang, J. et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435–439 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Kim, J. & Guan, K.L. Amino acid signaling in TOR activation. Annu. Rev. Biochem. 80, 1001–1032 (2011).

    CAS  PubMed  Google Scholar 

  13. 13

    Han, J.M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424 (2012).

    CAS  PubMed  Google Scholar 

  14. 14

    Segev, N. & Hay, N. Hijacking leucyl-tRNA synthetase for amino acid-dependent regulation of TORC1. Mol. Cell 46, 4–6 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hoffman, R.M. Tumor-seeking Salmonella amino acid auxotrophs. Curr. Opin. Biotechnol. 22, 917–923 (2011).

    CAS  PubMed  Google Scholar 

  16. 16

    Ruggiero, R.A. et al. Concomitant tumor resistance: the role of tyrosine isomers in the mechanisms of metastases control. Cancer Res. 72, 1043–1050 (2012).

    CAS  PubMed  Google Scholar 

  17. 17

    Levine, A.J. & Puzio-Kuter, A.M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340–1344 (2010).

    CAS  PubMed  Google Scholar 

  18. 18

    DeBerardinis, R.J. & Cheng, T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010).

    CAS  PubMed  Google Scholar 

  19. 19

    Wise, D.R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA 105, 18782–18787 (2008).

    CAS  PubMed  Google Scholar 

  20. 20

    Hattori, K., Naguro, I., Runchel, C. & Ichijo, H. The roles of ASK family proteins in stress responses and diseases. Cell Commun. Signal. 7, 9 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Ko, Y.G. et al. Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J. Biol. Chem. 276, 6030–6036 (2001).

    CAS  PubMed  Google Scholar 

  22. 22

    Wahab, S.Z. & Yang, D.C. Synthesis of diadenosine 5′,5′′′ -P1,P4-tetraphosphate by lysyl-tRNA synthetase and a multienzyme complex of aminoacyl-tRNA synthetases from rat liver. J. Biol. Chem. 260, 5286–5289 (1985).

    CAS  PubMed  Google Scholar 

  23. 23

    Zamecnik, P. Diadenosine 5′,5′′′-P1,P4-tetraphosphate (Ap4A): its role in cellular metabolism. Anal. Biochem. 134, 1–10 (1983).

    CAS  PubMed  Google Scholar 

  24. 24

    Bochner, B.R., Lee, P.C., Wilson, S.W., Cutler, C.W. & Ames, B.N. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37, 225–232 (1984).

    CAS  PubMed  Google Scholar 

  25. 25

    Lee, Y.N., Nechushtan, H., Figov, N. & Razin, E. The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcδRI-activated mast cells. Immunity 20, 145–151 (2004).

    CAS  PubMed  Google Scholar 

  26. 26

    Yannay-Cohen, N. et al. LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol. Cell 34, 603–611 (2009).

    CAS  PubMed  Google Scholar 

  27. 27

    Ofir-Birin, Y. et al. Structural switch of lysyl-tRNA synthetases between translation and transcription. Mol. Cell 49, 30–42 (2013).

    CAS  PubMed  Google Scholar 

  28. 28

    Blanquet, S., Plateau, P. & Brevet, A. The role of zinc in 5′,5′-diadenosine tetraphosphate production by aminoacyl-transfer RNA synthetases. Mol. Cell. Biochem. 52, 3–11 (1983).

    CAS  PubMed  Google Scholar 

  29. 29

    Justin, N., De Marco, V., Aasland, R. & Gamblin, S.J. Reading, writing and editing methylated lysines on histone tails: new insights from recent structural studies. Curr. Opin. Struct. Biol. 20, 730–738 (2010).

    CAS  PubMed  Google Scholar 

  30. 30

    Tzima, E. et al. VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J. Biol. Chem. 280, 2405–2408 (2005).

    CAS  PubMed  Google Scholar 

  31. 31

    Guo, M., Yang, X.L. & Schimmel, P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat. Rev. Mol. Cell Biol. 11, 668–674 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Shiba, K. Intron positions delineate the evolutionary path of a pervasively appended peptide in five human aminoacyl-tRNA synthetases. J. Mol. Evol. 55, 727–733 (2002).

    CAS  PubMed  Google Scholar 

  33. 33

    Wakasugi, K. et al. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc. Natl. Acad. Sci. USA 99, 173–177 (2002).

    CAS  PubMed  Google Scholar 

  34. 34

    Sajish, M. et al. Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-γ and p53 signaling. Nat. Chem. Biol. 8, 547–554 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Ray, P.S. et al. Evolution of function of a fused metazoan tRNA synthetase. Mol. Biol. Evol. 28, 437–447 (2011).

    CAS  PubMed  Google Scholar 

  36. 36

    Cerini, C. et al. A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase. EMBO J. 10, 4267–4277 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Arif, A., Jia, J., Moodt, R.A., DiCorleto, P.E. & Fox, P.L. Phosphorylation of glutamyl-prolyl tRNA synthetase by cyclin-dependent kinase 5 dictates transcript-selective translational control. Proc. Natl. Acad. Sci. USA 108, 1415–1420 (2011).

    CAS  PubMed  Google Scholar 

  38. 38

    Mukhopadhyay, R., Jia, J., Arif, A., Ray, P.S. & Fox, P.L. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem. Sci. 34, 324–331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Jia, J., Arif, A., Ray, P.S. & Fox, P.L. WHEP domains direct noncanonical function of glutamyl-prolyl tRNA synthetase in translational control of gene expression. Mol. Cell 29, 679–690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Herzog, W., Muller, K., Huisken, J. & Stainier, D.Y. Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circ. Res. 104, 1260–1266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Fukui, H., Hanaoka, R. & Kawahara, A. Noncanonical activity of seryl-tRNA synthetase is involved in vascular development. Circ. Res. 104, 1253–1259 (2009).

    CAS  PubMed  Google Scholar 

  42. 42

    Xu, X. et al. Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nat. Commun. 3, 681 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Francin, M., Kaminska, M., Kerjan, P. & Mirande, M. The N-terminal domain of mammalian lysyl-tRNA synthetase is a functional tRNA-binding domain. J. Biol. Chem. 277, 1762–1769 (2002).

    CAS  PubMed  Google Scholar 

  44. 44

    Frugier, M., Moulinier, L. & Giegé, R. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. EMBO J. 19, 2371–2380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Negrutskii, B.S., Shalak, V.F., Kerjan, P., El'fskaya, A.V. & Mirande, M. Functional interaction of mammalian valyl-tRNA synthetase with elongation factor EF-1α in the complex with EF-1H. J. Biol. Chem. 274, 4545–4550 (1999).

    CAS  PubMed  Google Scholar 

  46. 46

    He, R., Zu, L.D., Yao, P., Chen, X. & Wang, E.D. Two non-redundant fragments in the N-terminal peptide of human cytosolic methionyl-tRNA synthetase were indispensable for the multi-synthetase complex incorporation and enzyme activity. Biochim. Biophys. Acta 1794, 347–354 (2009).

    CAS  PubMed  Google Scholar 

  47. 47

    Kerjan, P., Cerini, C., Semeriva, M. & Mirande, M. The multienzyme complex containing nine aminoacyl-tRNA synthetases is ubiquitous from Drosophila to mammals. Biochim. Biophys. Acta 1199, 293–297 (1994).

    CAS  PubMed  Google Scholar 

  48. 48

    Lee, S.W., Cho, B.H., Park, S.G. & Kim, S. Aminoacyl-tRNA synthetase complexes: beyond translation. J. Cell Sci. 117, 3725–3734 (2004).

    CAS  PubMed  Google Scholar 

  49. 49

    Robinson, J.C., Kerjan, P. & Mirande, M. Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein-protein interactions and mechanism of complex assembly. J. Mol. Biol. 304, 983–994 (2000).

    CAS  PubMed  Google Scholar 

  50. 50

    Quevillon, S., Robinson, J.C., Berthonneau, E., Siatecka, M. & Mirande, M. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein. J. Mol. Biol. 285, 183–195 (1999).

    CAS  PubMed  Google Scholar 

  51. 51

    Han, J.M. et al. Hierarchical network between the components of the multi-tRNA synthetase complex: implications for complex formation. J. Biol. Chem. 281, 38663–38667 (2006).

    CAS  PubMed  Google Scholar 

  52. 52

    Kyriacou, S.V. & Deutscher, M.P. An important role for the multienzyme aminoacyl-tRNA synthetase complex in mammalian translation and cell growth. Mol. Cell 29, 419–427 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Kang, T. et al. AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. J. Mol. Biol. 423, 475–481 (2012).

    CAS  PubMed  Google Scholar 

  54. 54

    Park, S.G., Choi, E.C. & Kim, S. Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): a triad for cellular homeostasis. IUBMB Life 62, 296–302 (2010).

    CAS  PubMed  Google Scholar 

  55. 55

    Zhu, X. et al. MSC p43 required for axonal development in motor neurons. Proc. Natl. Acad. Sci. USA 106, 15944–15949 (2009).

    CAS  PubMed  Google Scholar 

  56. 56

    Park, S.G. et al. The novel cytokine p43 stimulates dermal fibroblast proliferation and wound repair. Am. J. Pathol. 166, 387–398 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Kim, J.Y. et al. p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance. Proc. Natl. Acad. Sci. USA 99, 7912–7916 (2002).

    CAS  PubMed  Google Scholar 

  58. 58

    Kim, M.J. et al. Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. Nat. Genet. 34, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  59. 59

    Choi, J.W., Um, J.Y., Kundu, J.K., Surh, Y.J. & Kim, S. Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis. Carcinogenesis 30, 1638–1644 (2009).

    CAS  PubMed  Google Scholar 

  60. 60

    Ko, H.S. et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci. 25, 7968–7978 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Kwon, N.H. et al. Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc. Natl. Acad. Sci. USA 108, 19635–19640 (2011).

    CAS  PubMed  Google Scholar 

  62. 62

    Park, B.J. et al. The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120, 209–221 (2005).

    CAS  PubMed  Google Scholar 

  63. 63

    Kim, K.J. et al. Determination of three-dimensional structure and residues of the novel tumor suppressor AIMP3/p18 required for the interaction with ATM. J. Biol. Chem. 283, 14032–14040 (2008).

    CAS  PubMed  Google Scholar 

  64. 64

    Howard, O.M. et al. Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J. Exp. Med. 196, 781–791 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Yamasaki, Y. et al. Unusually high frequency of autoantibodies to PL-7 associated with milder muscle disease in Japanese patients with polymyositis/dermatomyositis. Arthritis Rheum. 54, 2004–2009 (2006).

    CAS  PubMed  Google Scholar 

  66. 66

    Xu, Z. et al. Internally deleted human tRNA synthetase suggests evolutionary pressure for repurposing. Structure 20, 1470–1477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Wu, P.C. et al. In vivo sensitivity of human melanoma to tumor necrosis factor (TNF)-α is determined by tumor production of the novel cytokine endothelial-monocyte activating polypeptide II (EMAPII). Cancer Res. 59, 205–212 (1999).

    CAS  PubMed  Google Scholar 

  68. 68

    Shalak, V. et al. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J. Biol. Chem. 276, 23769–23776 (2001).

    CAS  PubMed  Google Scholar 

  69. 69

    Zhou, Q. et al. Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality. Nat. Struct. Mol. Biol. 17, 57–61 (2010).

    CAS  PubMed  Google Scholar 

  70. 70

    Banin, E. et al. T2-TrpRS inhibits preretinal neovascularization and enhances physiological vascular regrowth in OIR as assessed by a new method of quantification. Invest. Ophthalmol. Vis. Sci. 47, 2125–2134 (2006).

    PubMed  Google Scholar 

  71. 71

    Tzima, E. et al. Biologically active fragment of a human tRNA synthetase inhibits fluid shear stress–activated responses of endothelial cells. Proc. Natl. Acad. Sci. USA 100, 14903–14907 (2003).

    CAS  PubMed  Google Scholar 

  72. 72

    Yao, P. et al. Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell 149, 88–100 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Han, J.M. et al. AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc. Natl. Acad. Sci. USA 105, 11206–11211 (2008).

    CAS  PubMed  Google Scholar 

  74. 74

    Choi, J.W. et al. AIMP2 promotes TNFα-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J. Cell Sci. 122, 2710–2715 (2009).

    CAS  PubMed  Google Scholar 

  75. 75

    Choi, J.W. et al. Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer. J. Mol. Cell Biol. 4, 164–173 (2012).

    PubMed  Google Scholar 

  76. 76

    Choi, J.W. et al. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet. 7, e1001351 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Lee, J.W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443, 50–55 (2006).

    CAS  Google Scholar 

  78. 78

    Beebe, K., Ribas De Pouplana, L. & Schimmel, P. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J. 22, 668–675 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Antonellis, A. & Green, E.D. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu. Rev. Genomics Hum. Genet. 9, 87–107 (2008).

    CAS  PubMed  Google Scholar 

  80. 80

    Zhao, Z. et al. Alanyl-tRNA synthetase mutation in a family with dominant distal hereditary motor neuropathy. Neurology 78, 1644–1649 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Froelich, C.A. & First, E.A. Dominant intermediate Charcot-Marie-Tooth disorder is not due to a catalytic defect in tyrosyl-tRNA synthetase. Biochemistry 50, 7132–7145 (2011).

    CAS  PubMed  Google Scholar 

  82. 82

    Xie, W., Nangle, L.A., Zhang, W., Schimmel, P. & Yang, X.L. Long-range structural effects of a Charcot-Marie-Tooth disease-causing mutation in human glycyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 104, 9976–9981 (2007).

    CAS  PubMed  Google Scholar 

  83. 83

    Seburn, K.L., Nangle, L.A., Cox, G.A., Schimmel, P. & Burgess, R.W. An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron 51, 715–726 (2006).

    CAS  Google Scholar 

  84. 84

    Stum, M. et al. An assessment of mechanisms underlying peripheral axonal degeneration caused by aminoacyl-tRNA synthetase mutations. Mol. Cell. Neurosci. 46, 432–443 (2011).

    CAS  PubMed  Google Scholar 

  85. 85

    He, W. et al. Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc. Natl. Acad. Sci. USA 108, 12307–12312 (2011).

    CAS  PubMed  Google Scholar 

  86. 86

    van de Vijver, M.J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    CAS  PubMed  Google Scholar 

  87. 87

    Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    CAS  PubMed  Google Scholar 

  88. 88

    Paley, E.L., Paley, D.E., Merkulova-Rainon, T. & Subbarayan, P.R. Hypoxia signature of splice forms of tryptophanyl-tRNA synthetase marks pancreatic cancer cells with distinct metastatic abilities. Pancreas 40, 1043–1056 (2011).

    CAS  PubMed  Google Scholar 

  89. 89

    Ghanipour, A. et al. The prognostic significance of tryptophanyl-tRNA synthetase in colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 18, 2949–2956 (2009).

    CAS  PubMed  Google Scholar 

  90. 90

    Mun, J. et al. A proteomic approach based on multiple parallel separation for the unambiguous identification of an antibody cognate antigen. Electrophoresis 31, 3428–3436 (2010).

    CAS  PubMed  Google Scholar 

  91. 91

    Kron, M.A., Petridis, M., Haertlein, M., Libranda-Ramirez, B. & Scaffidi, L.E. Do tissue levels of autoantigenic aminoacyl-tRNA synthetase predict clinical disease? Med. Hypotheses 65, 1124–1127 (2005).

    CAS  PubMed  Google Scholar 

  92. 92

    Levine, S.M., Rosen, A. & Casciola-Rosen, L.A. Anti-aminoacyl tRNA synthetase immune responses: insights into the pathogenesis of the idiopathic inflammatory myopathies. Curr. Opin. Rheumatol 15, 708–713 (2003).

    CAS  PubMed  Google Scholar 

  93. 93

    Park, S.G. et al. Autoantibodies against aminoacyl-tRNA synthetase: novel diagnostic marker for type 1 diabetes mellitus. Biomarkers 15, 358–366 (2010).

    CAS  PubMed  Google Scholar 

  94. 94

    Mörbt, N. et al. Chlorinated benzenes cause concomitantly oxidative stress and induction of apoptotic markers in lung epithelial cells (A549) at nonacute toxic concentrations. J. Proteome Res. 10, 363–378 (2011).

    PubMed  Google Scholar 

  95. 95

    Kim, S.S., Hur, S.Y., Kim, Y.R., Yoo, N.J. & Lee, S.H. Expression of AIMP1, 2 and 3, the scaffolds for the multi-tRNA synthetase complex, is downregulated in gastric and colorectal cancer. Tumori. 97, 380–385 (2011).

    PubMed  Google Scholar 

  96. 96

    Yao, C. et al. P43/pro-EMAPII: a potential biomarker for discriminating traumatic versus ischemic brain injury. J. Neurotrauma 26, 1295–1305 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. 97

    Park, M.C. et al. Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc. Natl. Acad. Sci. USA 109, E640–E647 (2012).

    CAS  PubMed  Google Scholar 

  98. 98

    Schwarz, R.E. et al. Antitumor effects of EMAP II against pancreatic cancer through inhibition of fibronectin-dependent proliferation. Cancer Biol. Ther. 9, 632–639 (2010).

    CAS  PubMed  Google Scholar 

  99. 99

    Han, J.M., Park, S.G., Lee, Y. & Kim, S. Structural separation of different extracellular activities in aminoacyl-tRNA synthetase-interacting multi-functional protein, p43/AIMP1. Biochem. Biophys. Res. Commun. 342, 113–118 (2006).

    CAS  PubMed  Google Scholar 

  100. 100

    Han, J.M. et al. Identification of gp96 as a novel target for treatment of autoimmune disease in mice. PLoS ONE 5, e9792 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by US National Institutes of Health (NIH) grant GM 23562 and NCI grant CA92577 and by a fellowship from the US National Foundation for Cancer Research (P.S.), by NIH grant GM 100136, a Kimmel Scholar Award for Cancer Research and by funding from the state of Florida to Scripps Florida (M.G.).

Author information



Corresponding author

Correspondence to Paul Schimmel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, M., Schimmel, P. Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 9, 145–153 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing