Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase

Abstract

Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low concentrations and a defensive cytotoxin at higher concentrations. The high active site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock and cancer. Our crystal structures and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a new specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents toward remote specificity pockets, which become accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active site conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NOS inhibitors structures, inhibition and crystallographic data.
Figure 2: Quinazoline and aminopyridine binding in iNOSox and eNOSox.
Figure 3: Selective aminopyridine compound 9 binding to eNOS versus iNOS.
Figure 4: Isozyme-specific induced fit upon inhibitor binding.
Figure 5: Bicyclic thioenooxazepine inhibitor binding in iNOSox.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Geller, D.A. & Billiar, T.R. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 17, 7–23 (1998).

    Article  CAS  Google Scholar 

  2. Nathan, C. The moving frontier in nitric oxide-dependent signaling. Sci. STKE 2004, pe52 (2004).

    PubMed  Google Scholar 

  3. Bian, K. & Murad, F. Nitric oxide (NO)–biogeneration, regulation, and relevance to human diseases. Front. Biosci. 8, d264–d278 (2003).

    Article  CAS  Google Scholar 

  4. Thippeswamy, T., McKay, J.S., Quinn, J.P. & Morris, R. Nitric oxide, a biological double-faced Janus–is this good or bad? Histol. Histopathol. 21, 445–458 (2006).

    CAS  PubMed  Google Scholar 

  5. Duncan, A.J. & Heales, S.J. Nitric oxide and neurological disorders. Mol. Aspects Med. 26, 67–96 (2005).

    Article  CAS  Google Scholar 

  6. Crane, B.R. et al. The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science 278, 425–431 (1997).

    Article  CAS  Google Scholar 

  7. Crane, B.R. et al. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279, 2121–2126 (1998).

    Article  CAS  Google Scholar 

  8. Raman, C.S. et al. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95, 939–950 (1998).

    Article  CAS  Google Scholar 

  9. Crane, B.R. et al. N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization. EMBO J. 18, 6271–6281 (1999).

    Article  CAS  Google Scholar 

  10. Fischmann, T.O. et al. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat. Struct. Biol. 6, 233–242 (1999).

    Article  CAS  Google Scholar 

  11. Crane, B.R. et al. Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins. Biochemistry 39, 4608–4621 (2000).

    Article  CAS  Google Scholar 

  12. Rosenfeld, R.J. et al. Conformational changes in nitric oxide synthases induced by chlorzoxazone and nitroindazoles: crystallographic and computational analyses of inhibitor potency. Biochemistry 41, 13915–13925 (2002).

    Article  CAS  Google Scholar 

  13. Fedorov, R., Hartmann, E., Ghosh, D.K. & Schlichting, I. Structural basis for the specificity of the nitric-oxide synthase inhibitors W1400 and N\{omega\}-propyl-L-Arg for the inducible and neuronal isoforms. J. Biol. Chem. 278, 45818–45825 (2003).

    Article  CAS  Google Scholar 

  14. Flinspach, M. et al. Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase. Nat. Struct. Mol. Biol. 11, 54–59 (2004).

    Article  CAS  Google Scholar 

  15. Flinspach, M. et al. Structures of the neuronal and endothelial nitric oxide synthase heme domain with D-nitroarginine-containing dipeptide inhibitors bound. Biochemistry 43, 5181–5187 (2004).

    Article  CAS  Google Scholar 

  16. Aoyagi, M., Arvai, A.S., Tainer, J.A. & Getzoff, E.D. Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J. 22, 766–775 (2003).

    Article  CAS  Google Scholar 

  17. Abu-Soud, H.M. & Stuehr, D.J. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc. Natl. Acad. Sci. USA 90, 10769–10772 (1993).

    Article  CAS  Google Scholar 

  18. Zhang, J. et al. Crystal structure of the FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase. J. Biol. Chem. 276, 37506–37513 (2001).

    Article  CAS  Google Scholar 

  19. Garcin, E.D. et al. Structural basis for isozyme-specific regulation of electron transfer in nitric oxide synthase. J. Biol. Chem. 279, 37918–37927 (2004).

    Article  CAS  Google Scholar 

  20. Ji, H., Li, H., Flinspach, M., Poulos, T.L. & Silverman, R.B. Computer modeling of selective regions in the active site of nitric oxide synthases: implication for the design of isoform-selective inhibitors. J. Med. Chem. 46, 5700–5711 (2003).

    Article  CAS  Google Scholar 

  21. Li, H. & Poulos, T.L. Structure-function studies on nitric oxide synthases. J. Inorg. Biochem. 99, 293–305 (2005).

    Article  CAS  Google Scholar 

  22. Zhu, Y., Nikolic, D., VanBreemen, R.B. & Silverman, R.B. Mechanism of inactivation of inducible nitric oxide synthase by amidines. Irreversible enzyme inactivation without inactivator modification. J. Am. Chem. Soc. 127, 858–868 (2005).

    Article  CAS  Google Scholar 

  23. Strub, A. et al. The novel imidazopyridine 2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine (BYK191023) is a highly selective inhibitor of the inducible nitric-oxide synthase. Mol. Pharmacol. 69, 328–337 (2006).

    CAS  PubMed  Google Scholar 

  24. Tafi, A. et al. Computational studies of competitive inhibitors of nitric oxide synthase (NOS) enzymes: towards the development of powerful and isoform-selective inhibitors. Curr. Med. Chem. 13, 1929–1946 (2006).

    Article  CAS  Google Scholar 

  25. Tinker, A. & Wallace, A.V. Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases? Curr. Top. Med. Chem. 6, 77–92 (2006).

    Article  CAS  Google Scholar 

  26. Tinker, A.C. et al. 1,2-dihydro-4-quinazolinamine: potent, highly selective inhibitors of inducible nitric oxide synthase which show antiinflammatory activity in vivo. J. Med. Chem. 46, 913–916 (2003).

    Article  CAS  Google Scholar 

  27. Hagmann, W.K. et al. Substituted 2-aminopyridines as inhibitors of nitric oxide synthases. Bioorg. Med. Chem. Lett. 10, 1975–1978 (2000).

    Article  CAS  Google Scholar 

  28. Connolly, S. et al. 2-aminopyridines as highly-selective inducible nitric oxide synthase inhibitors. Differential binding modes dependent on nitrogen substitution. J. Med. Chem. 47, 3320–3323 (2004).

    Article  CAS  Google Scholar 

  29. Sandstrom, P. et al. Highly selective inhibition of inducible nitric oxide synthase ameliorates experimental acute pancreatitis. Pancreas 30, e10–e15 (2005).

    PubMed  Google Scholar 

  30. LaBuda, C.J., Koblish, M., Tuthill, P., Dolle, R.E. & Little, P.J. Antinociceptive activity of the selective iNOS inhibitor AR-C102222 in rodent models of inflammatory, neuropathic and post-operative pain. Eur. J. Pain 10, 505–512 (2006).

    Article  CAS  Google Scholar 

  31. Gachhui, R. et al. Mutagenesis of acidic residues in the oxygenase domain of inducible nitric-oxide synthase identifies a glutamate involved in arginine binding. Biochemistry 36, 5097–5103 (1997).

    Article  CAS  Google Scholar 

  32. Connolly, S. & Cox, D. Compounds. WO patent WO2000021934 (2000).

  33. Li, H. et al. Exploring the binding conformations of bulkier dipeptide amide inhibitors in constitutive nitric oxide synthases. Biochemistry 44, 15222–15229 (2005).

    Article  CAS  Google Scholar 

  34. Ji, H. et al. Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors. J. Am. Chem. Soc. 130, 3900–3914 (2008).

    Article  CAS  Google Scholar 

  35. Cheshire, D. et al. 5,7-bicyclic amidine derivatives useful as nitric oxide synthase inhibitors. WO patent WO2000064904 (2000).

  36. Sluis-Cremer, N., Temiz, N.A. & Bahar, I. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr. HIV Res. 2, 323–332 (2004).

    Article  CAS  Google Scholar 

  37. Urzhumtsev, A. et al. A 'specificity' pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure 5, 601–612 (1997).

    Article  CAS  Google Scholar 

  38. Kurumbail, R.G. et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384, 644–648 (1996).

    Article  CAS  Google Scholar 

  39. Garavito, R.M. & Mulichak, A.M. The structure of mammalian cyclooxygenases. Annu. Rev. Biophys. Biomol. Struct. 32, 183–206 (2003).

    Article  CAS  Google Scholar 

  40. Liu, Y. & Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2, 358–364 (2006).

    Article  CAS  Google Scholar 

  41. James, L.C., Roversi, P. & Tawfik, D.S. Antibody multispecificity mediated by conformational diversity. Science 299, 1362–1367 (2003).

    Article  CAS  Google Scholar 

  42. Ghosh, D.K. et al. Characterization of the inducible nitric oxide synthase oxygenase domain identifies a 49 amino acid segment required for subunit dimerization and tetrahydrobiopterin interaction. Biochemistry 36, 10609–10619 (1997).

    Article  CAS  Google Scholar 

  43. Martasek, P. et al. Characterization of bovine endothelial nitric oxide synthase expressed in E. coli. Biochem. Biophys. Res. Commun. 219, 359–365 (1996).

    Article  CAS  Google Scholar 

  44. Sherman, P.A., Laubach, V.E., Reep, B.R. & Wood, E.R. Purification and cDNA sequence of an inducible nitric oxide synthase from a human tumor cell line. Biochemistry 32, 11600–11605 (1993).

    Article  CAS  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  46. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  47. Kleywegt, G.J. & Jones, T.A. Databases in protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 54, 1119–1131 (1998).

    Article  CAS  Google Scholar 

  48. Kleywegt, G.J., Henrick, K., Dodson, E.J. & van Aalten, D.M.F. Pound-wise but penny-foolish. How well do micromolecules fare in macromolecular refinement? Structure 11, 1051–1059 (2003).

    Article  CAS  Google Scholar 

  49. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  50. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  51. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  52. McRee, D.E. XtalView/Xfit - a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  54. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

We thank K. Panda (Cleveland Clinic) and S. Ghosh (Cleveland Clinic) for preparation of the mouse iNOSox and bovine eNOSox proteins used in this study. Part of this work is based on research conducted at CHESS, SSRL, ESRF and MAX-LAB (Lund University). This work was supported in part by US National Institutes of Health grants (E.D.Getzoff and D.J.S.), and by the Skaggs Institute for Chemical Biology (E.D.Garcin).

Author information

Authors and Affiliations

Authors

Contributions

E.D.Garcin, crystallization, X-ray data collection and refinement, mutant design, binding assays, interpretation of structural and biochemical results, and preparation of figures and manuscript. A.S.A., crystallization, X-ray data collection and refinement. R.J.R., crystallization, X-ray data collection and refinement, and interpretation of structural results. M.D.K., mutagenesis, expression and purification of double mutant protein, binding assay and crystallization. B.R.C., crystallization, X-ray data collection and refinement. G.Andersson and A.Å., cloning, expression and purification of human iNOSox protein used in structural studies. G.Andrews and D.J.N., biochemical assays on wild-type and mutant proteins, experimental design and interpretation of biochemical results. N.P.G., experimental design and interpretation of chemical data. P.J.H., A.C.T., A.M., D.R.C. and S.C., design and synthesis of novel selective inhibitors and interpretation of chemical data. P.R.M., cloning, expression and purification of wild-type and mutant full-length enzymes and oxygenase modules used in biochemical assay. S.A.St-G., interpretation of chemical data. D.J.S., preparation of mouse iNOSox and bovine eNOSox used for structural studies. A.V.W., experimental design, interpretation of biochemical and structural data, and mutant design. J.A.T., direction and interpretation of structural experiments. E.D.Getzoff, direction and interpretation of structural and biochemical results, and preparation of manuscript.

Corresponding authors

Correspondence to Elsa D Garcin or Elizabeth D Getzoff.

Ethics declarations

Competing interests

G. Andersson, G. Andrews, P.J.H., P.R.M., D.J.N., S.A.St-G., A.C.T., N.P.G., A.M., D.R.C., S.C., A.Å. and A.V.W. were employed by AstraZeneca when involved in this study.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Methods and Supplementary Discussion (PDF 12630 kb)

Supplementary Movie 1

The Quicktime movie illustrates the cascade of conformational changes that occur in human iNOSox upon aminopyridine compound 9 binding (Quicktime, 582 kB). (MOV 587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcin, E., Arvai, A., Rosenfeld, R. et al. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol 4, 700–707 (2008). https://doi.org/10.1038/nchembio.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing