Structure and dynamics of a primordial catalytic fold generated by in vitro evolution

Abstract

Engineering functional protein scaffolds capable of carrying out chemical catalysis is a major challenge in enzyme design. Starting from a noncatalytic protein scaffold, we recently generated a new RNA ligase by in vitro directed evolution. This artificial enzyme lost its original fold and adopted an entirely new structure with substantially enhanced conformational dynamics, demonstrating that a primordial fold with suitable flexibility is sufficient to carry out enzymatic function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Changes in primary sequence and 3D structure upon directed evolution of the hRXRα scaffold to the ligase enzyme 10C.
Figure 2: Conformational dynamics of ligase enzyme 10C.
Figure 3: Substrate-binding surface of ligase 10C probed by NMR and alanine scanning.

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. 1

    Chothia, C. Nature 357, 543–544 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  3. 3

    Ohno, S. Evolution by Gene Duplication (Springer-Verlag, New York, 1971).

  4. 4

    Chothia, C., Gough, J., Vogel, C. & Teichmann, S.A. Science 300, 1701–1703 (2003).

    CAS  Article  Google Scholar 

  5. 5

    James, L.C. & Tawfik, D.S. Trends Biochem. Sci. 28, 361–368 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Tokuriki, N. & Tawfik, D.S. Science 324, 203–207 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Cordes, M.H.J., Walsh, N.P., McKnight, C.J. & Sauer, R.T. Science 284, 325–328 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Kaplan, J. & DeGrado, W.F. Proc. Natl. Acad. Sci. USA 101, 11566–11570 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Tuinstra, R.L. et al. Proc. Natl. Acad. Sci. USA 105, 5057–5062 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Bryan, P.N. & Orban, J. Curr. Opin. Struct. Biol. 20, 482–488 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Smith, B.A. & Hecht, M.H. Curr. Opin. Chem. Biol. 15, 421–426 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Keefe, A.D. & Szostak, J.W. Nature 410, 715–718 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Mansy, S.S. et al. J. Mol. Biol. 371, 501–513 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Seelig, B. & Szostak, J.W. Nature 448, 828–831 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Seelig, B. Nat. Protoc. 6, 540–552 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Holmbeck, S.M.A. et al. J. Mol. Biol. 281, 271–284 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Cho, G.S. & Szostak, J.W. Chem. Biol. 13, 139–147 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Zhao, Q. et al. J. Mol. Biol. 296, 509–520 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Maret, W. & Li, Y. Chem. Rev. 109, 4682–4707 (2009).

    CAS  Article  Google Scholar 

  20. 20

    van Tilborg, P.J. et al. Biochemistry 39, 8747–8757 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Yang, W., Lee, J.Y. & Nowotny, M. Mol. Cell 22, 5–13 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Bhabha, G. et al. Science 332, 234–238 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Baldwin, A.J. & Kay, L.E. Nat. Chem. Biol. 5, 808–814 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Henzler-Wildman, K. & Kern, D. Nature 450, 964–972 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Golynskiy, M.V. & Seelig, B. Trends Biotechnol. 28, 340–345 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Grzesiek, S. & Bax, A. J. Magn. Reson. 96, 432–440 (1992).

    CAS  Google Scholar 

  27. 27

    Muhandiram, D.R. & Kay, L.E. J. Magn. Reson. B. 103, 203–216 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Wittekind, M. & Mueller, L. J. Magn. Reson. B. 101, 201–205 (1993).

    CAS  Article  Google Scholar 

  29. 29

    Eghbalnia, H.R., Bahrami, A., Tonelli, M., Hallenga, K. & Markley, J.L. J. Am. Chem. Soc. 127, 12528–12536 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Grzesiek, S., Anglister, J. & Bax, A. J. Magn. Reson. B. 101, 114–119 (1993).

    CAS  Article  Google Scholar 

  31. 31

    Wuthrich, K. NMR of Proteins and Nucleic Acids (John Wiley and Sons, New York, 1986).

  32. 32

    Wishart, D.S., Sykes, B.D. & Richards, F.M. J. Mol. Biol. 222, 311–333 (1991).

    CAS  Article  Google Scholar 

  33. 33

    Vuister, G.W. & Bax, A. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    CAS  Article  Google Scholar 

  34. 34

    Lee, D., Hilty, C., Wider, G. & Wuthrich, K. J. Magn. Reson. 178, 72–76 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Gagné, S.M. et al. Protein Sci. 3, 1961–1974 (1994).

    Article  Google Scholar 

  36. 36

    Wang, Y., Zhao, S., Somerville, R.L. & Jardetzky, O. Protein Sci. 10, 592–598 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Rückert, M. & Otting, G. J. Am. Chem. Soc. 122, 7793–7797 (2000).

    Article  Google Scholar 

  38. 38

    Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. J. Magn. Reson. 160, 65–73 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Alberts, I.L., Nadassy, K. & Wodak, S.J. Protein Sci. 7, 1700–1716 (1998).

    CAS  Article  Google Scholar 

  40. 40

    Viles, J.H. et al. J. Mol. Biol. 279, 973–986 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Ohlenschläger, O. et al. Oncogene 25, 5953–5959 (2006).

    Article  Google Scholar 

  42. 42

    Banci, L., Bertini, I., Del Conte, R., Mangani, S. & Meyer-Klaucke, W. Biochemistry 42, 2467–2474 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Tenderholt, A. Pyspline (Stanford University, Stanford, 2007).

  44. 44

    Mustre de Leon, J., Rehr, J.J., Zabinsky, S.I. & Albers, R.C. Phys. Rev. B. Condens. Matter 44, 4146–4156 (1991).

    CAS  Article  Google Scholar 

  45. 45

    Rehr, J.J. & Albers, R.C. Rev. Mod. Phys. 72, 621–654 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Rehr, J.J., Deleon, J.M., Zabinsky, S.I. & Albers, R.C. J. Am. Chem. Soc. 113, 5135–5140 (1991).

    CAS  Article  Google Scholar 

  47. 47

    Kim, C.A. & Berg, J.M. Nat. Struct. Biol. 3, 940–945 (1996).

    CAS  Article  Google Scholar 

  48. 48

    George, G.N. EXAFSPAK and EDG-FIT (Stanford Synchrotron Radiation Lightsource, Menlo Park, 2000).

Download references

Acknowledgements

We thank M. Golynskiy and A. Pohorille for helpful discussions; Z. Sachs, F.P. Seebeck, J.W. Szostak and F. Hollfelder for comments on the manuscript; and R. Majerle for isothermal titration calorimetry instrument use. This work was supported by the US National Aeronautics and Space Administration (NASA) Agreement no. NNX09AH70A through the NASA Astrobiology Institute–Ames Research Center (to F.-A.C., A.M., L.C. and B.S.); the Minnesota Medical Foundation (to B.S.) and the US National Institutes of Health (NIH) (T32 GM08347 to J.C.H., T32 DE007288 to L.R.M., GM100310 to G.V. and P41 RR001209). Stanford Synchrotron Radiation Lightsource (SSRL) operations are funded by the US Department of Energy (DOE)–Basic Energy Sciences. The SSRL Structural Molecular Biology program is supported by NIH–National Center for Research Resources and DOE–Biological Environmental Resarch.

Author information

Affiliations

Authors

Contributions

G.V. and B.S. designed the project; A.M., J.C.H., L.C. and L.N.H. expressed and assayed proteins; F.-A.C. carried out all NMR and isothermal titration calorimetry experiments; F.-A.C. and L.S. calculated the structure; R.S. performed the EXAFS measurements, all authors analyzed the data; and F.-A.C., L.R.M., G.V. and B.S. wrote the paper.

Corresponding author

Correspondence to Burckhard Seelig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 1859 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chao, F., Morelli, A., III, J. et al. Structure and dynamics of a primordial catalytic fold generated by in vitro evolution. Nat Chem Biol 9, 81–83 (2013). https://doi.org/10.1038/nchembio.1138

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing