Brief Communication | Published:

Structure and dynamics of a primordial catalytic fold generated by in vitro evolution

Nature Chemical Biology volume 9, pages 8183 (2013) | Download Citation

Abstract

Engineering functional protein scaffolds capable of carrying out chemical catalysis is a major challenge in enzyme design. Starting from a noncatalytic protein scaffold, we recently generated a new RNA ligase by in vitro directed evolution. This artificial enzyme lost its original fold and adopted an entirely new structure with substantially enhanced conformational dynamics, demonstrating that a primordial fold with suitable flexibility is sufficient to carry out enzymatic function.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. 1.

    Nature 357, 543–544 (1992).

  2. 2.

    , , & J. Mol. Biol. 247, 536–540 (1995).

  3. 3.

    Evolution by Gene Duplication (Springer-Verlag, New York, 1971).

  4. 4.

    , , & Science 300, 1701–1703 (2003).

  5. 5.

    & Trends Biochem. Sci. 28, 361–368 (2003).

  6. 6.

    & Science 324, 203–207 (2009).

  7. 7.

    , , & Science 284, 325–328 (1999).

  8. 8.

    & Proc. Natl. Acad. Sci. USA 101, 11566–11570 (2004).

  9. 9.

    et al. Proc. Natl. Acad. Sci. USA 105, 5057–5062 (2008).

  10. 10.

    & Curr. Opin. Struct. Biol. 20, 482–488 (2010).

  11. 11.

    & Curr. Opin. Chem. Biol. 15, 421–426 (2011).

  12. 12.

    & Nature 410, 715–718 (2001).

  13. 13.

    et al. J. Mol. Biol. 371, 501–513 (2007).

  14. 14.

    & Nature 448, 828–831 (2007).

  15. 15.

    Nat. Protoc. 6, 540–552 (2011).

  16. 16.

    et al. J. Mol. Biol. 281, 271–284 (1998).

  17. 17.

    & Chem. Biol. 13, 139–147 (2006).

  18. 18.

    et al. J. Mol. Biol. 296, 509–520 (2000).

  19. 19.

    & Chem. Rev. 109, 4682–4707 (2009).

  20. 20.

    et al. Biochemistry 39, 8747–8757 (2000).

  21. 21.

    , & Mol. Cell 22, 5–13 (2006).

  22. 22.

    et al. Science 332, 234–238 (2011).

  23. 23.

    & Nat. Chem. Biol. 5, 808–814 (2009).

  24. 24.

    & Nature 450, 964–972 (2007).

  25. 25.

    & Trends Biotechnol. 28, 340–345 (2010).

  26. 26.

    & J. Magn. Reson. 96, 432–440 (1992).

  27. 27.

    & J. Magn. Reson. B. 103, 203–216 (1994).

  28. 28.

    & J. Magn. Reson. B. 101, 201–205 (1993).

  29. 29.

    , , , & J. Am. Chem. Soc. 127, 12528–12536 (2005).

  30. 30.

    , & J. Magn. Reson. B. 101, 114–119 (1993).

  31. 31.

    NMR of Proteins and Nucleic Acids (John Wiley and Sons, New York, 1986).

  32. 32.

    , & J. Mol. Biol. 222, 311–333 (1991).

  33. 33.

    & J. Am. Chem. Soc. 115, 7772–7777 (1993).

  34. 34.

    , , & J. Magn. Reson. 178, 72–76 (2006).

  35. 35.

    et al. Protein Sci. 3, 1961–1974 (1994).

  36. 36.

    , , & Protein Sci. 10, 592–598 (2001).

  37. 37.

    & J. Am. Chem. Soc. 122, 7793–7797 (2000).

  38. 38.

    , , & J. Magn. Reson. 160, 65–73 (2003).

  39. 39.

    , & Protein Sci. 7, 1700–1716 (1998).

  40. 40.

    et al. J. Mol. Biol. 279, 973–986 (1998).

  41. 41.

    et al. Oncogene 25, 5953–5959 (2006).

  42. 42.

    , , , & Biochemistry 42, 2467–2474 (2003).

  43. 43.

    Pyspline (Stanford University, Stanford, 2007).

  44. 44.

    , , & Phys. Rev. B. Condens. Matter 44, 4146–4156 (1991).

  45. 45.

    & Rev. Mod. Phys. 72, 621–654 (2000).

  46. 46.

    , , & J. Am. Chem. Soc. 113, 5135–5140 (1991).

  47. 47.

    & Nat. Struct. Biol. 3, 940–945 (1996).

  48. 48.

    EXAFSPAK and EDG-FIT (Stanford Synchrotron Radiation Lightsource, Menlo Park, 2000).

Download references

Acknowledgements

We thank M. Golynskiy and A. Pohorille for helpful discussions; Z. Sachs, F.P. Seebeck, J.W. Szostak and F. Hollfelder for comments on the manuscript; and R. Majerle for isothermal titration calorimetry instrument use. This work was supported by the US National Aeronautics and Space Administration (NASA) Agreement no. NNX09AH70A through the NASA Astrobiology Institute–Ames Research Center (to F.-A.C., A.M., L.C. and B.S.); the Minnesota Medical Foundation (to B.S.) and the US National Institutes of Health (NIH) (T32 GM08347 to J.C.H., T32 DE007288 to L.R.M., GM100310 to G.V. and P41 RR001209). Stanford Synchrotron Radiation Lightsource (SSRL) operations are funded by the US Department of Energy (DOE)–Basic Energy Sciences. The SSRL Structural Molecular Biology program is supported by NIH–National Center for Research Resources and DOE–Biological Environmental Resarch.

Author information

Affiliations

  1. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.

    • Fa-An Chao
    • , Aleardo Morelli
    • , John C Haugner III
    • , Lewis Churchfield
    • , Leonardo N Hagmann
    • , Larry R Masterson
    • , Gianluigi Veglia
    •  & Burckhard Seelig
  2. BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA.

    • Aleardo Morelli
    • , John C Haugner III
    • , Lewis Churchfield
    • , Leonardo N Hagmann
    •  & Burckhard Seelig
  3. Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA.

    • Lei Shi
    •  & Gianluigi Veglia
  4. SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California, USA.

    • Ritimukta Sarangi

Authors

  1. Search for Fa-An Chao in:

  2. Search for Aleardo Morelli in:

  3. Search for John C Haugner III in:

  4. Search for Lewis Churchfield in:

  5. Search for Leonardo N Hagmann in:

  6. Search for Lei Shi in:

  7. Search for Larry R Masterson in:

  8. Search for Ritimukta Sarangi in:

  9. Search for Gianluigi Veglia in:

  10. Search for Burckhard Seelig in:

Contributions

G.V. and B.S. designed the project; A.M., J.C.H., L.C. and L.N.H. expressed and assayed proteins; F.-A.C. carried out all NMR and isothermal titration calorimetry experiments; F.-A.C. and L.S. calculated the structure; R.S. performed the EXAFS measurements, all authors analyzed the data; and F.-A.C., L.R.M., G.V. and B.S. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Burckhard Seelig.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Results

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchembio.1138

Further reading