Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism

Abstract

Improving the control of energy homeostasis can lower cardiovascular risk in metabolically compromised individuals. To identify new regulators of whole-body energy control, we conducted a high-throughput screen in transgenic reporter zebrafish for small molecules that modulate the expression of the fasting-inducible gluconeogenic gene pck1. We show that this in vivo strategy identified several drugs that affect gluconeogenesis in humans as well as metabolically uncharacterized compounds. Most notably, we find that the translocator protein ligands PK 11195 and Ro5-4864 are glucose-lowering agents despite a strong inductive effect on pck1 expression. We show that these drugs are activators of a fasting-like energy state and, notably, that they protect high-fat diet–induced obese mice from hepatosteatosis and glucose intolerance, two pathological manifestations of metabolic dysregulation. Thus, using a whole-organism screening strategy, this study has identified new small-molecule activators of fasting metabolism.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Rapid pharmacological profiling of gluconeogenesis.
Figure 2: A small-molecule screen identifies functionally conserved as well as unknown modulators of gluconeogenesis.
Figure 3: TSPO ligands enhance a gluconeogenic fasting response.
Figure 4: TSPO ligands induce a fasting-like energy state in the liver.
Figure 5: PK 11195 improves hepatosteatosis and glucose tolerance in diet-induced obese mice.

References

  1. Mackay, J. & Mensah, G.A. Deaths from coronary heart disease. in The Atlas of Heart Disease and Stroke. 48–49 (World Health Organization, 2008).

  2. Haslam, D.W. & James, W.P.T. Obesity. Lancet 366, 1197–1209 (2005).

    Article  Google Scholar 

  3. Muoio, D.M. & Newgard, C.B. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 193–205 (2008).

    Article  CAS  Google Scholar 

  4. Taubes, G. Insulin resistance. Prosperity's plague. Science 325, 256–260 (2009).

    Article  CAS  Google Scholar 

  5. Baur, J.A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Tseng, Y.-H., Cypess, A.M. & Kahn, C.R. Cellular bioenergetics as a target for obesity therapy. Nat. Rev. Drug Discov. 9, 465–482 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Silber, B.M. Driving drug discovery: the fundamental role of academic labs. Sci. Transl. Med. 2, 30cm16 (2010).

    Article  Google Scholar 

  8. Swinney, D.C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  Google Scholar 

  9. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  CAS  Google Scholar 

  10. Schlegel, A. & Stainier, D.Y.R. Lessons from 'lower' organisms: what worms, flies, and zebrafish can teach us about human energy metabolism. PLoS Genet. 3, e199 (2007).

    Article  PubMed  Google Scholar 

  11. Yang, J., Reshef, L., Cassuto, H., Aleman, G. & Hanson, R.W. Aspects of the control of phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 284, 27031–27035 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, H.V. & Accili, D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14, 9–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Burgess, S.C. et al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 5, 313–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kurita, R. et al. Suppression of lens growth by αA-crystallin promoter-driven expression of diphtheria toxin results in disruption of retinal cell organization in zebrafish. Dev. Biol. 255, 113–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Eisenstein, A.B. Current concepts of gluconeogenesis. Am. J. Clin. Nutr. 20, 282–289 (1967).

    Article  CAS  PubMed  Google Scholar 

  17. Croniger, C.M. et al. Mice with a deletion in the gene for CCAAT/enhancer-binding protein β have an attenuated response to cAMP and impaired carbohydrate metabolism. J. Biol. Chem. 276, 629–638 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Polo, R.-A. et al. PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene 24, 7503–7513 (2005).

    Article  CAS  Google Scholar 

  20. Rupprecht, R. et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat. Rev. Drug Discov. 9, 971–988 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Hirsch, J.D., Beyer, C.F., Malkowitz, L., Loullis, C.C. & Blume, A.J. Characterization of ligand binding to mitochondrial benzodiazepine receptors. Mol. Pharmacol. 35, 164–172 (1989).

    CAS  PubMed  Google Scholar 

  22. Marangos, P.J., Patel, J., Boulenger, J.P. & Clark-Rosenberg, R. Characterization of peripheral-type benzodiazepine binding sites in brain using [3H]Ro 5–4864. Mol. Pharmacol. 22, 26–32 (1982).

    CAS  PubMed  Google Scholar 

  23. Rakhshandehroo, M., Hooiveld, G., Müller, M. & Kersten, S. Comparative analysis of gene regulation by the transcription factor PPARα between mouse and human. PLoS ONE 4, e6796 (2009).

    Article  PubMed  Google Scholar 

  24. Kersten, S. et al. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489–1498 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Anson, R.M. et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl. Acad. Sci. USA 100, 6216–6220 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Rupprecht, R. et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 325, 490–493 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Fulda, S., Galluzzi, L. & Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 9, 447–464 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Verma, A., Nye, J.S. & Snyder, S.H. Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. Proc. Natl. Acad. Sci. USA 84, 2256–2260 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Papadopoulos, V. et al. Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 27, 402–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Braestrup, C. & Squires, R.F. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc. Natl. Acad. Sci. USA 74, 3805–3809 (1977).

    Article  CAS  Google Scholar 

  31. Song, Y. et al. CRTC3 links catecholamine signalling to energy balance. Nature 468, 933–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Barth, E. et al. Glucose metabolism and catecholamines. Crit. Care Med. 35, S508–S518 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Guhan, A.R. et al. Systemic effects of formoterol and salmeterol: a dose-response comparison in healthy subjects. Thorax 55, 650–656 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Patel, R. et al. LXRβ is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J. Clin. Invest. 121, 431–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Vegiopoulos, A. & Herzig, S. Glucocorticoids, metabolism and metabolic diseases. Mol. Cell. Endocrinol. 275, 43–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Tulipano, G. et al. Clozapine-induced alteration of glucose homeostasis in the rat: the contribution of hypothalamic-pituitary-adrenal axis activation. Neuroendocrinology 85, 61–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, G.C., Chaussade, C., Vickers, M., Jensen, J. & Shepherd, P.R. Atypical antipsychotic drugs induce derangements in glucose homeostasis by acutely increasing glucagon secretion and hepatic glucose output in the rat. Diabetologia 51, 2309–2317 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Newcomer, J.W. Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 19 (suppl. 1), 1–93 (2005).

    CAS  PubMed  Google Scholar 

  39. Joost, H.G., Poser, W. & Panten, U. Inhibition of insulin release from the rat pancreas by cyproheptadine and tricyclic antidepressants. Naunyn Schmiedebergs Arch. Pharmacol. 285, 99–102 (1974).

    Article  CAS  PubMed  Google Scholar 

  40. Gupta, B., Shakarwal, M.K., Kumar, A. & Jaju, B.P. Modulation of glucose homeostasis by doxepin. Methods Find. Exp. Clin. Pharmacol. 14, 61–71 (1992).

    CAS  Google Scholar 

  41. Pan, A. et al. Use of antidepressant medication and risk of type 2 diabetes: results from three cohorts of US adults. Diabetologia 55, 63–72 (2012).

    Article  CAS  Google Scholar 

  42. Srinivasan, S. et al. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab. 7, 533–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Ye, Z. et al. Metabolic effects of fluoxetine in adults with type 2 diabetes mellitus: a meta-analysis of randomized placebo-controlled trials. PLoS ONE 6, e21551 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Andersohn, F., Schade, R., Suissa, S. & Garbe, E. Long-term use of antidepressants for depressive disorders and the risk of diabetes mellitus. Am. J. Psychiatry 166, 591–598 (2009).

    Article  Google Scholar 

  45. Thermes, V. et al. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 118, 91–98 (2002).

    Article  CAS  Google Scholar 

  46. Jurczyk, A. et al. Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen. Comp. Endocrinol. 170, 334–345 (2011).

    Article  CAS  Google Scholar 

  47. Her, G.M., Yeh, Y.-H. & Wu, J.-L. 435-bpliver regulatory sequence in the liver fatty acid binding protein (L-FABP) gene is sufficient to modulate liver regional expression in transgenic zebrafish. Dev. Dyn. 227, 347–356 (2003).

    Article  CAS  Google Scholar 

  48. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Finck, B.N. et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metab. 4, 199–210 (2006).

    Article  CAS  Google Scholar 

  50. Hirschey, M.D. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Schlegel, O. Stone and K. Ashrafi for critical reading of the manuscript; the members of the Stainier lab for technical advice throughout the project; and A. Ayala, M. Alva, P. Lopez Pazmino and M. Sklar for zebrafish care. We are grateful to C. Miller from the Gladstone Histology Core for histological processing of mouse livers. We also thank R. Peterson for sharing knowledge on in vivo bioluminescence measurements in zebrafish. This study was supported in part by a postdoctoral fellowship DFG GU 1082/101 from the German Research Foundation to P.G., grant DK59637 to the Mouse Metabolic Phenotypic Centers lipid lab, Pilot/Feasibility grants from the University of California–San Francisco Liver Center (P30 DK026743) and Diabetes and Endocrinology Center (P30 DK063720), US National Institutes of Health (NIH) grant NS051470 to K.A., funds from the Gladstone Institutes and the Glenn Foundation for Medical Research to E.V., the American Heart Association grant 12SDG8840004 to M.D.H., NIH grant RO1 DK60322, a pilot and feasibility award from the University of California–San Fransisco diabetes center funded by NIH U01 DK089541 and the Packard Foundation to D.Y.R.S.

Author information

Authors and Affiliations

Authors

Contributions

P.G. conceived the study, designed and performed experiments, analyzed data and wrote the paper. D.Y.R.S. designed experiments, analyzed data, supervised the work and wrote the paper. M.D.H. designed and performed experiments and analyzed data. O.A., B.B.-R., D.H., L.H. and J.H. performed experiments. K.A. and E.V. contributed material and supervised the work. All authors commented on the paper.

Corresponding authors

Correspondence to Philipp Gut or Didier Y R Stainier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 9343 kb)

Supplementary Table 3

Supplementary Table 3 (XLS 32 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gut, P., Baeza-Raja, B., Andersson, O. et al. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol 9, 97–104 (2013). https://doi.org/10.1038/nchembio.1136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing