Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases

Abstract

Throughout molecular evolution, organisms create assorted chemicals in response to varying ecological niches. Catalytic landscapes underlie metabolic evolution, wherein mutational steps alter the biosynthetic properties of enzymes. Here we report the first systematic quantitative characterization of the catalytic landscape underlying the evolution of sesquiterpene chemical diversity. On the basis of our previous discovery of a set of nine naturally occurring amino acid substitutions that functionally interconverted orthologous sesquiterpene synthases from Nicotiana tabacum and Hyoscyamus muticus, we created a library of all possible residue combinations (29 = 512) in the N. tabacum enzyme. The product spectra of 418 active enzymes revealed a rugged landscape where several minimal combinations of the nine mutations encode convergent solutions to the interconversions of parental activities. Quantitative comparisons indicated context dependence for mutational effects—epistasis—in product specificity and promiscuity. These results provide a measure of the mutational accessibility of phenotypic variability in a diverging lineage of terpene synthases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Terminal cyclization steps of TEAS and HPS terpene synthases.
Figure 2: Overall structure of TEAS and location and identity of M9 residues.
Figure 3: Phylogenetic distribution of solanaceous TEAS- and HPS-like terpene synthases.
Figure 4: Activities of the M9 lineage.
Figure 5: Biosynthetic tree of the M9 library.
Figure 6: AID in chemical and sequence space.

Similar content being viewed by others

References

  1. Grayer, R.J. & Kokubun, T. Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56, 253–263 (2001).

    Article  CAS  Google Scholar 

  2. Pedras, M.S., Okanga, F.I., Zaharia, I.L. & Khan, A.Q. Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 53, 161–176 (2000).

    Article  CAS  Google Scholar 

  3. Harborne, J.B. The comparative biochemistry of phytoalexin induction in plants. Biochem. Syst. Ecol. 27, 335–367 (1999).

    Article  CAS  Google Scholar 

  4. Akiyama, K., Matsuzaki, K. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005).

    Article  CAS  Google Scholar 

  5. Mumm, R. & Hilker, M. The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem. Senses 30, 337–343 (2005).

    Article  CAS  Google Scholar 

  6. Feeny, P. Herbivores: Their Interactions with Secondary Plant Metabolites 2nd edn. (Academic Press, San Diego, 1992).

    Google Scholar 

  7. Gershenzon, J. & Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408–414 (2007).

    Article  CAS  Google Scholar 

  8. O'Maille, P.E., Bakhtina, M. & Tsai, M.D. Structure-based combinatorial protein engineering (SCOPE). J. Mol. Biol. 321, 677–691 (2002).

    Article  CAS  Google Scholar 

  9. O'Maille, P.E., Chappell, J. & Noel, J.P. A single-vial analytical and quantitative gas chromatography-mass spectrometry assay for terpene synthases. Anal. Biochem. 335, 210–217 (2004).

    Article  CAS  Google Scholar 

  10. Back, K., He, S., Kim, K.U. & Shin, D.H. Cloning and bacterial expression of sesquiterpene cyclase, a key branch point enzyme for the synthesis of sesquiterpenoid phytoalexin capsidiol in UV-challenged leaves of Capsicum annuum. Plant Cell Physiol. 39, 899–904 (1998).

    Article  CAS  Google Scholar 

  11. Facchini, P.J. & Chappell, J. Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc. Natl. Acad. Sci. USA 89, 11088–11092 (1992).

    Article  CAS  Google Scholar 

  12. Greenhagen, B.T., O'Maille, P.E., Noel, J.P. & Chappell, J. Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proc. Natl. Acad. Sci. USA 103, 9826–9831 (2006).

    Article  CAS  Google Scholar 

  13. Dudareva, N. et al. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15, 1227–1241 (2003).

    Article  CAS  Google Scholar 

  14. Bohlmann, J., Meyer-Gauen, G. & Croteau, R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. USA 95, 4126–4133 (1998).

    Article  CAS  Google Scholar 

  15. O'Maille, P.E., Tsai, M.D., Greenhagen, B.T., Chappell, J. & Noel, J.P. Gene library synthesis by structure-based combinatorial protein engineering. Methods Enzymol. 388, 75–91 (2004).

    Article  CAS  Google Scholar 

  16. O'Maille, P.E., Chappell, J. & Noel, J.P. Biosynthetic potential of sesquiterpene synthases: alternative products of tobacco 5-epi-aristolochene synthase. Arch. Biochem. Biophys. 448, 73–82 (2006).

    Article  CAS  Google Scholar 

  17. Copley, S.D. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol. 7, 265–272 (2003).

    Article  CAS  Google Scholar 

  18. Jensen, R.A. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976).

    Article  CAS  Google Scholar 

  19. O'Brien, P.J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105 (1999).

    Article  CAS  Google Scholar 

  20. Wilderman, P.R. & Peters, R.J. A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase. J. Am. Chem. Soc. 129, 15736–15737 (2007).

    Article  CAS  Google Scholar 

  21. Yoshikuni, Y., Ferrin, T.E. & Keasling, J.D. Designed divergent evolution of enzyme function. Nature 440, 1078–1082 (2006).

    Article  CAS  Google Scholar 

  22. Hyatt, D.C. & Croteau, R. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Arch. Biochem. Biophys. 439, 222–233 (2005).

    Article  CAS  Google Scholar 

  23. Kampranis, S.C. et al. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell 19, 1994–2005 (2007).

    Article  CAS  Google Scholar 

  24. Kollner, T.G., Schnee, C., Gershenzon, J. & Degenhardt, J. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16, 1115–1131 (2004).

    Article  Google Scholar 

  25. Weinreich, D.M., Delaney, N.F., Depristo, M.A. & Hartl, D.L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  Google Scholar 

  26. Ortlund, E.A., Bridgham, J.T., Redinbo, M.R. & Thornton, J.W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317, 1544–1548 (2007).

    Article  CAS  Google Scholar 

  27. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D.S. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

    Article  CAS  Google Scholar 

  28. Miller, S.P., Lunzer, M. & Dean, A.M. Direct demonstration of an adaptive constraint. Science 314, 458–461 (2006).

    Article  CAS  Google Scholar 

  29. Thulasiram, H.V., Erickson, H.K. & Poulter, C.D. Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis. Science 316, 73–76 (2007).

    Article  CAS  Google Scholar 

  30. Agarwal, P.K., Billeter, S.R., Rajagopalan, P.T., Benkovic, S.J. & Hammes-Schiffer, S. Network of coupled promoting motions in enzyme catalysis. Proc. Natl. Acad. Sci. USA 99, 2794–2799 (2002).

    Article  CAS  Google Scholar 

  31. Rajagopalan, P.T., Lutz, S. & Benkovic, S.J. Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates. Biochemistry 41, 12618–12628 (2002).

    Article  CAS  Google Scholar 

  32. Lockless, S.W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299 (1999).

    Article  CAS  Google Scholar 

  33. Austin, M.B., O'Maille, P.E. & Noel, J.P. Evolving biosynthetic tangos negotiate mechanistic landscapes. Nat. Chem. Biol. 4, 217–222 (2008).

    Article  CAS  Google Scholar 

  34. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Austin and J. Melnick for critical review of the manuscript, Y. Zhai for computational support and J. Gullberg and A. Nordstom for insightful discussions. This work was supported by National Institutes of Health grant GM54029 to J.C. and J.P.N. J.P.N. is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

P.E.O. designed the study, conducted experiments, analyzed data and wrote the manuscript; A.M. conducted experiments and developed small-scale protein purification; N.D. conducted experiments, analyzed data and contributed revisions to the manuscript; B.A.H. conducted quantum mechanics calculations and contributed revisions to the manuscript; L.S. conducted quantum mechanics calculations; I.S. conducted experiments; B.T.G. and J.C. designed the study and contributed revisions to the manuscript; G.M. analyzed data, developed the biosynthetic tree and chemical distance analysis, and contributed revisions to the manuscript; J.P.N. designed the study, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Joseph P Noel.

Ethics declarations

Competing interests

J.P.N. and J.C. declare an interest in Allylix, Inc. as scientific co-founders and stockholders. Allylix, Inc. is engaged in the commercial production of high-value sesquiterpene products.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1–7 and Supplementary Methods (PDF 6532 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Maille, P., Malone, A., Dellas, N. et al. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat Chem Biol 4, 617–623 (2008). https://doi.org/10.1038/nchembio.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing