Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis

Abstract

Functional assignment of uncharacterized proteins is a challenge in the era of large-scale genome sequencing. Here, we combine in extracto NMR, proteomics and transcriptomics with a newly developed (knock-out) metabolomics platform to determine a potential physiological role for a ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Rhodospirillum rubrum. Our studies unraveled an unexpected link in bacterial central carbon metabolism between S-adenosylmethionine–dependent polyamine metabolism and isoprenoid biosynthesis and also provide an alternative approach to assign enzyme function at the organismic level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny and function of RLPs.
Figure 2: Characterization of the initial steps in MTA metabolism of R. rubrum by in extracto NMR.
Figure 3: Methanethiol release and DXP formation are linked in R. rubrum.
Figure 4: The proposed MTA-isoprenoid shunt in R. rubrum.
Figure 5: Analysis of MTA-derived metabolites in R. rubrum wild type and mutants without feeding of external MTA.
Figure 6: Proteome and transcriptome analysis of R. rubrum cells that were grown aerobically with sulfate or MTA as the sole sulfur source.

Similar content being viewed by others

References

  1. Phillips, R. & Milo, R. A feeling for the numbers in biology. Proc. Natl. Acad. Sci. USA 106, 21465–21471 (2009).

    Article  CAS  Google Scholar 

  2. Tabita, F.R. et al. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol. Mol. Biol. Rev. 71, 576–599 (2007).

    Article  CAS  Google Scholar 

  3. Hanson, T.E. & Tabita, F.R. A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc. Natl. Acad. Sci. USA 98, 4397–4402 (2001).

    Article  CAS  Google Scholar 

  4. Ashida, H. et al. A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302, 286–290 (2003).

    Article  CAS  Google Scholar 

  5. Imker, H.J., Singh, J., Warlick, B.P., Tabita, F.R. & Gerlt, J.A. Mechanistic diversity in the RuBisCO superfamily: a novel isomerization reaction catalyzed by the RuBisCO-like protein from Rhodospirillum rubrum. Biochemistry 47, 11171–11173 (2008).

    Article  CAS  Google Scholar 

  6. Pearce, F.G. Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies. Biochem. J. 399, 525–534 (2006).

    Article  CAS  Google Scholar 

  7. Cleland, W.W., Andrews, T.J., Gutteridge, S., Hartman, F.C. & Lorimer, G.H. Mechanism of rubisco: the carbamate as general base. Chem. Rev. 98, 549–562 (1998).

    Article  CAS  Google Scholar 

  8. Paech, C., Pierce, J., McCurry, S.D. & Tolbert, N.E. Inhibition of ribulose-1,5-biphosphate carboxylase/oxygenase by ribulose-1,5-bisphosphate epimerization and degradation products. Biochem. Biophys. Res. Commun. 83, 1084–1092 (1978).

    Article  CAS  Google Scholar 

  9. Imker, H.J., Fedorov, A.A., Fedorov, E.V., Almo, S.C. & Gerlt, J.A. Mechanistic diversity in the RuBisCO superfamily: the “enolase” in the methionine salvage pathway in Geobacillus kaustophilus. Biochemistry 46, 4077–4089 (2007).

    Article  CAS  Google Scholar 

  10. Carré-Mlouka, A. et al. A new rubisco-like protein coexists with a photosynthetic rubisco in the planktonic cyanobacteria. Microcystis. J. Biol. Chem. 281, 24462–24471.

  11. Sekowska, A. et al. Bacterial variations on the methionine salvage pathway. BMC Microbiol. 4, 9 (2004).

    Article  Google Scholar 

  12. Albers, E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5′-methylthioadenosine. IUBMB Life 61, 1132–1142 (2009).

    Article  CAS  Google Scholar 

  13. Singh, J. & Tabita, F.R. Roles of RubisCO and the RubisCO-like protein in 5-methylthioadenosine metabolism in the nonsulfur purple bacterium. Rhodospirillum rubrum. J. Bacteriol. 192, 1324–1331 (2010).

    Article  CAS  Google Scholar 

  14. Sekowska, A., Mulard, L., Krogh, S., Tse, J.K. & Danchin, A. MtnK, methylthioribose kinase, is a starvation-induced protein in Bacillus subtilis. BMC Microbiol. 1, 15 (2001).

    Article  CAS  Google Scholar 

  15. Sekowska, A., Robin, S., Daudin, J.J., Henaut, A. & Danchin, A. Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis. Genome Biol. 2, RESEARCH0019 (2001).

    Article  CAS  Google Scholar 

  16. Sekowska, A. & Danchin, A. The methionine salvage pathway in Bacillus subtilis. BMC Microbiol. 2, 8 (2002).

    Article  Google Scholar 

  17. Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  CAS  Google Scholar 

  18. Fagerbakke, K.M., Heldal, M. & Norland, S. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 10, 15–27 (1996).

    Article  Google Scholar 

  19. Paulin, L.G., Brander, E.E. & Poso, H.J. Specific inhibition of spermidine synthesis in Mycobacteria spp. by the dextro isomer of ethambutol. Antimicrob. Agents Chemother. 28, 157–159 (1985).

    Article  CAS  Google Scholar 

  20. Gopishetty, B. et al. Probing the catalytic mechanism of S-ribosylhomocysteinase (LuxS) with catalytic intermediates and substrate analogues. J. Am. Chem. Soc. 131, 1243–1250 (2009).

    Article  CAS  Google Scholar 

  21. Kiene, R.P., Linn, L.J., Gonzalez, J., Moran, M.A. & Bruton, J.A. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl. Environ. Microbiol. 65, 4549–4558 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bolten, C.J., Schroder, H., Dickschat, J. & Wittmann, C. Towards methionine overproduction in Corynebacterium glutamicum—methanethiol and dimethyldisulfide as reduced sulfur sources. J. Microbiol. Biotechnol. 20, 1196–1203 (2010).

    Article  CAS  Google Scholar 

  23. Rohmer, M., Knani, M., Simonin, P., Sutter, B. & Sahm, H. Isoprenoid biosynthesis in bacteria—a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295, 517–524 (1993).

    Article  CAS  Google Scholar 

  24. Eisenreich, W., Bacher, A., Arigoni, D. & Rohdich, F. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 61, 1401–1426 (2004).

    Article  CAS  Google Scholar 

  25. Hamana, K., Kamekura, M., Onishi, H., Akazawa, T. & Matsuzaki, S. Polyamines in photosynthetic eubacteria and extreme-halophilic archaebacteria. J. Biochem. 97, 1653–1658 (1985).

    Article  CAS  Google Scholar 

  26. Hamana, K. & Matsuzaki, S. Polyamines as a chemotaxonomic marker in bacterial systematics. Crit. Rev. Microbiol. 18, 261–283 (1992).

    Article  CAS  Google Scholar 

  27. Salim, H.M., Negritto, M.C. & Cavalcanti, A.R. 1+1 = 3: a fusion of 2 enzymes in the methionine salvage pathway of Tetrahymena thermophila creates a trifunctional enzyme that catalyzes 3 steps in the pathway. PLoS Genet. 5, e1000701 (2009).

    Article  Google Scholar 

  28. Ashida, H. et al. RuBisCO-like proteins as the enolase enzyme in the methionine salvage pathway: functional and evolutionary relationships between RuBisCO-like proteins and photosynthetic RuBisCO. J. Exp. Bot. 59, 1543–1554 (2008).

    Article  CAS  Google Scholar 

  29. Tabita, F.R., Hanson, T.E., Satagopan, S., Witte, B.H. & Kreel, N.E. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 2629–2640 (2008).

    Article  CAS  Google Scholar 

  30. Tabita, F.R., Satagopan, S., Hanson, T.E., Kreel, N.E. & Scott, S.S. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59, 1515–1524 (2008).

    Article  CAS  Google Scholar 

  31. Ashida, H., Danchin, A. & Yokota, A. Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism? Res. Microbiol. 156, 611–618 (2005).

    Article  CAS  Google Scholar 

  32. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  33. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  Google Scholar 

  34. Kanehisa, M. et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006).

    Article  CAS  Google Scholar 

  35. Smith, C.A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  Google Scholar 

  36. Wishart, D.S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a fellowship to T.J.E. from the Deutsche Forschungsgemeinschaft (ER 646/1-1) and research grants from the US National Institutes of Health (R01GM065155, R01GM095742, P01GM071790 and U54GM093342). We would like to thank J.E. Cronan for critical comments and C. Deane and T. Miyairi for excellent technical assistance. We also acknowledge S.C. Almo and B.S. Hillerich (New York Structural Genomics Research Consortium) for providing expression plasmids and purified cupin for in vitro assays.

Author information

Authors and Affiliations

Authors

Contributions

T.J.E., B.S.E. and J.A.G. conceived and designed the experiments. T.J.E. performed the experiments, with the exception of metabolome analyses, which were acquired by B.S.E., K.C. and B.M.W. and biochemical characterization of the cupin protein in vitro, which was performed by B.S.E and B.P.W. B.S.E., K.C., B.M.W. and J.V.S. developed the mass spectrometric platform and evaluated MS data. J.S. and F.R.T. created and provided the rlp mutant strain and the cupin mutant strain of R. rubrum. B.P.W. and H.J.I. provided chemicals and recombinant enzymes for the synthesis of chemicals. T.J.E. and J.A.G. wrote the paper.

Corresponding author

Correspondence to John A Gerlt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 7127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erb, T., Evans, B., Cho, K. et al. A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat Chem Biol 8, 926–932 (2012). https://doi.org/10.1038/nchembio.1087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1087

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research