Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An enzyme-trap approach allows isolation of intermediates in cobalamin biosynthesis

Subjects

Abstract

The biosynthesis of many vitamins and coenzymes has often proven difficult to elucidate owing to a combination of low abundance and kinetic lability of the pathway intermediates. Through a serial reconstruction of the cobalamin (vitamin B12) pathway in Escherichia coli and by His tagging the terminal enzyme in the reaction sequence, we have observed that many unstable intermediates can be isolated as tightly bound enzyme-product complexes. Together, these approaches have been used to extract intermediates between precorrin-4 and hydrogenobyrinic acid in their free acid form and permitted the delineation of the overall reaction catalyzed by CobL, including the formal elucidation of precorrin-7 as a metabolite. Furthermore, a substrate-carrier protein, CobE, that can also be used to stabilize some of the transient metabolic intermediates and enhance their onward transformation, has been identified. The tight association of pathway intermediates with enzymes provides evidence for a form of metabolite channeling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transformation of uroporphyrinogen III into HBA and its position in the pathway in relation to adenosylcobalamin biosynthesis.
Figure 2: Spectral panoply of cobalamin intermediates isolated either via an enzyme–product complex, carrier–protein complex or by in vitro incubation.
Figure 3: Role of CobE in the stabilization of precorrin-8 and the structure determination of the protein.
Figure 4: Structure analysis of CobL.
Figure 5: Transformation of precorrin-6B into HBA and C5-desmethyl-HBA.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Webb, M.E., Marquet, A., Mendel, R.R., Rebeille, F. & Smith, A.G. Elucidating biosynthetic pathways for vitamins and cofactors. Nat. Prod. Rep. 24, 988–1008 (2007).

    Article  CAS  Google Scholar 

  2. Battersby, A.R. How nature builds the pigments of life: the conquest of vitamin B12 . Science 264, 1551–1557 (1994).

    Article  CAS  Google Scholar 

  3. Warren, M.J., Raux, E., Schubert, H.L. & Escalante-Semerena, J.C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19, 390–412 (2002).

    Article  CAS  Google Scholar 

  4. Blanche, F. et al. Vitamin B12: how the problem of its biosynthesis was solved. Angew. Chem. Int. Edn. Engl. 34, 383–411 (1995).

    Article  CAS  Google Scholar 

  5. Blanche, F. et al. Hydrogenobyrinic acid—isolation, biosynthesis, and function. Angew. Chem. Int. Edn. Engl. 29, 884–886 (1990).

    Article  Google Scholar 

  6. McGoldrick, H.M. et al. Identification and characterization of a novel vitamin B12 (cobalamin) biosynthetic enzyme (CobZ) from Rhodobacter capsulatus, containing flavin, heme, and Fe-S cofactors. J. Biol. Chem. 280, 1086–1094 (2005).

    Article  CAS  Google Scholar 

  7. Uzar, H.C., Battersby, A.R., Carpenter, T.A. & Leeper, F.J. Biosynthesis of porphyrins and related macrocycles. Part 28. Development of a pulse labeling method to determine the C-methylation sequence for vitamin B12 . J. Chem. Soc. Perkin Trans. 1, 1689–1696 (1987).

    Article  Google Scholar 

  8. Blanche, F., Debussche, L., Thibaut, D., Crouzet, J. & Cameron, B. Purification and characterization of S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase from Pseudomonas denitrificans. J. Bacteriol. 171, 4222–4231 (1989).

    Article  CAS  Google Scholar 

  9. Warren, M.J. et al. Enzymatic synthesis and structure of precorrin-3, a trimethyldipyrrocorphin intermediate in vitamin B12 biosynthesis. Biochemistry 31, 603–609 (1992).

    Article  CAS  Google Scholar 

  10. Debussche, L. et al. Biosynthesis of vitamin B12: structure of precorrin-3B, the trimethylated substrate of the enzyme catalysing ring contraction. J. Chem. Soc. Chem. Commun. 1100–1103 (1993).

  11. Scott, A.I. et al. Biosynthesis of vitamin B12. Discovery of the enzymes for oxidative ring contraction and insertion of the fourth methyl group. FEBS Lett. 331, 105–108 (1993).

    Article  CAS  Google Scholar 

  12. Thibaut, D. et al. Biosynthesis of vitamin-B12—the structure of factor-IV, the oxidized form of precorrin-4. J. Chem. Soc. Chem. Commun. 513–515 (1993).

  13. Min, C. et al. Isolation, structure and genetically engineered synthesis of precorrin-5. J. Am. Chem. Soc. 115, 10380–10381 (1993).

    Article  CAS  Google Scholar 

  14. Thibaut, D., Blanche, F., Debussche, L., Leeper, F.J. & Battersby, A.R. Biosynthesis of vitamin B12: structure of precorrin-6x octamethyl ester. Proc. Natl. Acad. Sci. USA 87, 8800–8804 (1990).

    Article  CAS  Google Scholar 

  15. Blanche, F. et al. Precorrin-6x reductase from Pseudomonas denitrificans: purification and characterization of the enzyme and identification of the structural gene. J. Bacteriol. 174, 1036–1042 (1992).

    Article  CAS  Google Scholar 

  16. Blanche, F. et al. Biosynthesis of vitamin B12 in Pseudomonas denitrificans: the biosynthetic sequence from precorrin-6y to precorrin-8x is catalyzed by the cobL gene product. J. Bacteriol. 174, 1050–1052 (1992).

    Article  CAS  Google Scholar 

  17. Thibaut, D. et al. The final step in the biosynthesis of hydrogenobyrinic acid is catalyzed by the cobH gene product with precorrin-8x as the substrate. J. Bacteriol. 174, 1043–1049 (1992).

    Article  CAS  Google Scholar 

  18. Santander, P.J., Kajiwara, Y., Williams, H.J. & Scott, A.I. Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorg. Med. Chem. 14, 724–731 (2006).

    Article  CAS  Google Scholar 

  19. Scott, A.I., Warren, M.J., Roessner, C.A., Stolowich, N.J. & Santander, P.J. Development of an overmethylation strategy for corrin synthesis. Multi-enzyme preparation of pyrrocorphins. J. Chem. Soc. Chem. Commun. 593–597 (1990).

  20. Shipman, L.W., Li, D., Roessner, C.A., Scott, A.I. & Sacchettini, J.C. Crystal structure of precorrin-8x methyl mutase. Structure 9, 587–596 (2001).

    Article  CAS  Google Scholar 

  21. Pettersson, G. No convincing evidence is available for metabolite channeling between enzymes forming dynamic complexes. J. Theor. Biol. 152, 65–69 (1991).

    Article  CAS  Google Scholar 

  22. Wu, X.M., Gutfreund, H., Lakatos, S. & Chock, P.B. Substrate channeling in glycolysis: a phantom phenomenon. Proc. Natl. Acad. Sci. USA 88, 497–501 (1991).

    Article  CAS  Google Scholar 

  23. Huang, X., Holden, H.M. & Raushel, F.M. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 70, 149–180 (2001).

    Article  CAS  Google Scholar 

  24. Jørgensen, K. et al. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280–291 (2005).

    Article  Google Scholar 

  25. Miles, E.W., Rhee, S. & Davies, D.R. The molecular basis of substrate channeling. J. Biol. Chem. 274, 12193–12196 (1999).

    Article  CAS  Google Scholar 

  26. McGuffee, S.R. & Elcock, A.H. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 6, e1000694 (2010).

    Article  Google Scholar 

  27. Mika, J.T., van den Bogaart, G., Veenhoff, L., Krasnikov, V. & Poolman, B. Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress. Mol. Microbiol. 77, 200–207 (2010).

    Article  CAS  Google Scholar 

  28. Robinson, J.B. Jr., Inman, L., Sumegi, B. & Srere, P.A. Further characterization of the Krebs tricarboxylic acid cycle metabolon. J. Biol. Chem. 262, 1786–1790 (1987).

    CAS  PubMed  Google Scholar 

  29. Dogutan, D.K. et al. Hangman corroles: efficient synthesis and oxygen reaction chemistry. J. Am. Chem. Soc. 133, 131–140 (2011).

    Article  CAS  Google Scholar 

  30. Lee, C.H., Dogutan, D.K. & Nocera, D.G. Hydrogen generation by hangman metalloporphyrins. J. Am. Chem. Soc. 133, 8775–8777 (2011).

    Article  CAS  Google Scholar 

  31. Waibel, R. et al. New derivatives of vitamin B12 show preferential targeting of tumors. Cancer Res. 68, 2904–2911 (2008).

    Article  CAS  Google Scholar 

  32. Sambrook, J. & Russell, D. Site-specific mutagenesis by overlap extension in Molecular Cloning: A Laboratory Manual 3rd edn., Ch. 13, 13.36–13.39 (Cold Spring Harbor Laboratory Press, 2001).

  33. Wishart, D.S. & Sykes, B.D. Chemical-shifts as a tool for structure determination. Methods Enzymol. 239, 363–392 (1994).

    Article  CAS  Google Scholar 

  34. Delaglio, F. et al. NMRpipe—a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  35. Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  Google Scholar 

  36. Vévodová, J., Graham, R.M., Raux, E., Warren, M.J. & Wilson, K.S. Crystallization and preliminary structure analysis of CobE, an essential protein of cobalamin (vitamin B12) biosynthesis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61, 442–444 (2005).

    Article  Google Scholar 

  37. Seyedarabi, A. et al. Cloning, purification and preliminary crystallographic analysis of cobalamin methyltransferases from Rhodobacter capsulatus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 1652–1656 (2010).

    Article  CAS  Google Scholar 

  38. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).

    Article  CAS  Google Scholar 

  39. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  40. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  Google Scholar 

  41. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  42. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  43. Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G.W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  Google Scholar 

  44. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004).

    Article  CAS  Google Scholar 

  45. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Biotechnology and Biological Sciences Research Council (BB/E024203 and BB/I013334) and the Wellcome Trust (091163/Z/10/Z). We thank M. Rowe for additional NMR technical support. Diffraction data were collected at the European Synchrotron Radiation Facility, Grenoble, France (for CobE) and the Diamond Light Source, Oxfordshire, UK (for CobL and CobH). We thank C. Roessner (Texas A&M University) for a clone of the P. denitrificans cobG.

Author information

Authors and Affiliations

Authors

Contributions

E.D. designed and performed most of the experiments and analysis with support from A.D.L. and S.S.; A.D.L. performed MS analysis. S.L.T. performed all NMR data acquisition, which was analyzed with M.J.H. S.S., A.S. and R.W.P. contributed the CobLC and CobH–HBA structures and CobL and CobE–HBA models. J.W. and K.S.W. contributed the CobE structure. D.B. and S.S. determined the CobH–5-desmethyl-HBA structure. M.A.G. provided insight into substrate channeling. M.J.W. directed all aspects of the project. E.D. and M.J.W. wrote the manuscript.

Corresponding authors

Correspondence to Richard W Pickersgill or Martin J Warren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 9560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deery, E., Schroeder, S., Lawrence, A. et al. An enzyme-trap approach allows isolation of intermediates in cobalamin biosynthesis. Nat Chem Biol 8, 933–940 (2012). https://doi.org/10.1038/nchembio.1086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing