Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Force probing of individual molecules inside the living cell is now a reality

Abstract

Biological systems can be quantitatively explored using single-molecule manipulation techniques such as optical or magnetic tweezers or atomic force microscopy. Though a plethora of discoveries have been accomplished using single-molecule manipulation techniques in vitro, such investigations constantly face the criticism that conditions are too far from being physiologically relevant. Technical achievements now allow scientists to take the next step: to use single-molecule manipulation techniques quantitatively in vivo. Considerable progress has been accomplished in this realm; for example, the interaction between a protein and the membrane of a living cell has been probed, the mechanical properties of individual proteins central for cellular adhesion have been measured and even the action of molecular motors in living cells has been quantified. Here, we review the progress of in vivo single-molecule manipulation with a focus on the special challenges posed by in vivo conditions and how these can be overcome.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A kinesin motor carrying a force-transducing handle and monitored by optical tweezers inside a living cell.
Figure 2: Magnetic beads are microinjected, attached to DNA plasmids and manipulated by magnetic tweezers.
Figure 3: An AFM maps out a cellular surface, attaches specifically to a protein and performs force spectroscopy on the protein.
Figure 4: Probing membrane protein motility.
Figure 5: AFM investigation of strength of individual proteins involved in cell adhesion.
Figure 6: In vivo quantitative measurements of forces involved in separating daughter nuclei during cell division measured by an orchestra of single-molecule manipulation methods.

References

  1. 1

    Block, S.M., Goldstein, L.S. & Schnapp, B.J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    CAS  PubMed  Google Scholar 

  2. 2

    Schnitzer, M.J. & Block, S.M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    CAS  PubMed  Google Scholar 

  3. 3

    Shaevitz, J.W., Abbondanzieri, E.A., Landick, R. & Block, S.M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684–687 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Wang, M.D. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    CAS  PubMed  Google Scholar 

  5. 5

    Strick, T.R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000).

    CAS  PubMed  Google Scholar 

  6. 6

    Wen, J.D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Charvin, G., Strick, T.R., Bensimon, D. & Croquette, V. Tracking topoisomerase activity at the single-molecule level. Annu. Rev. Biophys. Biomol. Struct. 34, 201–219 (2005).

    CAS  PubMed  Google Scholar 

  8. 8

    Koster, D.A., Palle, K., Bot, E.S., Bjornsti, M.A. & Dekker, N.H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448, 213–217 (2007).

    CAS  Google Scholar 

  9. 9

    Wang, M.D., Yin, H., Landick, R., Gelles, J. & Block, S. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    van Mameren, J. et al. Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proc. Natl. Acad. Sci. USA 106, 18231–18236 (2009).

    CAS  PubMed  Google Scholar 

  11. 11

    Gross, P. et al. Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys. 7, 731–736 (2011).

    CAS  Google Scholar 

  12. 12

    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    CAS  Google Scholar 

  13. 13

    Fernandez, J.M. & Li, H.B. Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004).

    CAS  PubMed  Google Scholar 

  14. 14

    Winther, T., Xu, L., Berg-Sørensen, K., Brown, S. & Oddershede, L. Effect of energy metabolism on protein motility in bacterial outer membranes. Biophys. J. 97, 1305–1312 (2009). First proof that in vivo membrane protein motility is dependent on the cell's physiological state.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Gross, S.P., Welte, M.A., Block, S.M. & Wieschaus, E.F. Dynein-mediated cargo transport in vivo. A switch controls travel distance. J. Cell Biol. 148, 945–956 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Wang, Z., Khan, S. & Sheetz, M.P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Sørensen, M.A. & Pedersen, S. Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J. Mol. Biol. 222, 265–280 (1991).

    PubMed  Google Scholar 

  18. 18

    Binnig, G., Quate, C.F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    CAS  PubMed  Google Scholar 

  19. 19

    Ashkin, A. & Dziedzic, J. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987). This paper showed that microorganisms could stay alive while optically trapped, thus paving the way for in vivo single-molecule investigations.

    CAS  PubMed  Google Scholar 

  20. 20

    Ashkin, A., Schutze, K., Dziedzic, J., Euteneuer, U. & Schliwa, M. Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348, 346–348 (1990). First quantitative in vivo measurements of the force exerted by an individual molecular motor.

    CAS  PubMed  Google Scholar 

  21. 21

    Amblard, F., Yurke, B., Pargellis, A. & Leibler, S. A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Rev. Sci. Instrum. 67, 818–827 (1996).

    CAS  Google Scholar 

  22. 22

    Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    de Vries, A.H., Krenn, B.E., van Driel, R. & Kanger, J.S. Micro magnetic tweezers for nanomanipulation inside live cells. Biophys. J. 88, 2137–2144 (2005).

    CAS  PubMed  Google Scholar 

  24. 24

    Evans, E., Ritchie, K. & Merkel, R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68, 2580–2587 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008). A comprehensive review of the methods central for single molecule manipulation and of the status of the in vitro field.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Moffitt, J.R., Chemla, Y., Smith, S. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    CAS  PubMed  Google Scholar 

  27. 27

    Stevenson, D.J., Gunn-Moore, F. & Dholakia, K. Light forces the pace: optical manipulation for biophotonics. J. Biomed. Opt. 15, 041503 (2010).

    PubMed  Google Scholar 

  28. 28

    Veigel, C. & Schmidt, C.F. Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat. Rev. Mol. Cell Biol. 12, 163–176 (2011).

    CAS  PubMed  Google Scholar 

  29. 29

    Dufrêne, Y.F. et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat. Methods 8, 123–127 (2011).

    PubMed  Google Scholar 

  30. 30

    Valle, F. et al. A polymeric molecular “handle” for multiple AFM-based single-molecule force measurements. Angew. Chem. Int. Ed. Engl. 47, 2431–2434 (2008).

    CAS  PubMed  Google Scholar 

  31. 31

    Jauffred, L., Richardson, A. & Oddershede, L. Three-dimensional optical control of individual quantum dots. Nano Lett. 8, 3376–3380 (2008).

    CAS  PubMed  Google Scholar 

  32. 32

    Selhuber-Unkel, C., Zins, I., Schubert, O., Soennichsen, C. & Oddershede, L. Quantitative optical trapping of single gold nanorods. Nano Lett. 8, 2998–3003 (2008).

    CAS  PubMed  Google Scholar 

  33. 33

    Ma, H., Bendix, P. & Oddershede, L. Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano Lett. 12, 3954–3960 (2012).

    CAS  PubMed  Google Scholar 

  34. 34

    Merkel, R. & Nassoy, P. Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    CAS  PubMed  Google Scholar 

  35. 35

    Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Evans, E.A. & Calderwood, D. Forces and bond dynamics in cell adhesion. Science 316, 1148–1153 (2007).

    CAS  PubMed  Google Scholar 

  37. 37

    Oddershede, L., Dreyer, J.K., Grego, S., Brown, S. & Berg-Sørensen, K. The motion of a single molecule, the l-receptor, in the bacterial outer membrane. Biophys. J. 83, 3152–3161 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Huang, J., Nagy, S.S., Koide, A., Rock, R.S. & Koide, S. A peptide tag system for facile purification and single-molecule immobilization. Biochemistry 48, 11834–11836 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Wang, S.H., Lee, C.W., Chiou, A. & Wei, P.K. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J. Nanobiotechnology 8, 33 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Iversen, T.G., Skotland, T. & Sandvig, K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6, 176–185 (2011).

    CAS  Google Scholar 

  41. 41

    Marchington, R.F., Arita, Y., Tsampoula, X., Gunn-Moore, F.J. & Dholakia, K. Optical injection of mammalian cells using a microfluidic platform. Biomed. Opt. Express 1, 527–536 (2010).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Nicklas, R.B. & Koch, C.A. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J. Cell Biol. 43, 40–50 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Edidin, M., Kuo, S.C. & Sheetz, M.P. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science 254, 1379–1382 (1991).

    CAS  PubMed  Google Scholar 

  44. 44

    Sako, Y. & Kusumi, A. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J. Cell Biol. 129, 1559–1574 (1995). One of the first papers to show how individual membrane proteins can be individually manipulated in vivo.

    CAS  PubMed  Google Scholar 

  45. 45

    Tomishige, M. & Kusumi, A. Compartmentalization of the erythrocyte membrane by the membrane skeleton: intercompartmental hop diffusion of band 3. Mol. Biol. Cell 10, 2475–2479 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Pralle, A., Keller, P., Florin, E.L., Simons, K. & Hörber, J.K. Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000). Demonstration of an elegant method to probe the interaction between a single protein and the membrane in the protein's local environment.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Suzuki, K., Ritchie, K., Kajikawa, E., Fujiwara, T. & Kusumi, A. Rapid hop diffusion of a G-protein–coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys. J. 88, 3659–3680 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Gibbs, K.A. et al. Complex spatial distribution and dynamics of an abundant Escherichia coli outer membrane protein, LamB. Mol. Microbiol. 53, 1771–1783 (2004).

    CAS  PubMed  Google Scholar 

  49. 49

    Winther, T. & Oddershede, L.B. Effect of antibiotics and antimicrobial peptides on single protein motility. Curr. Pharm. Biotechnol. 10, 486–493 (2009).

    CAS  PubMed  Google Scholar 

  50. 50

    Rieger, B., Dietrich, H., van den Doel, L. & van Vliet, L. Diffusion of micro-spheres in sealed and open microarrays. Microsc. Res. Tech. 65, 218–225 (2004).

    CAS  PubMed  Google Scholar 

  51. 51

    Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H.E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2, 313–317 (2000). Among the first reports of high-quality AFM measurements of adhesion forces at the single-molecule level.

    CAS  PubMed  Google Scholar 

  52. 52

    Benoit, M. & Gaub, H.E. Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cells Tissues Organs 172, 174–189 (2002).

    CAS  PubMed  Google Scholar 

  53. 53

    Franz, C.M., Taubenberger, A., Puech, P.H. & Muller, D.J. Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy. Sci. STKE 2007, pl5 (2007).

    PubMed  Google Scholar 

  54. 54

    Heinisch, J., Dupres, V., Wilk, S., Jendretzki, A. & Dufrene, Y. Single-molecule atomic force microscopy reveals clustering of the yeast plasma-membrane sensor Wsc1. PLoS ONE 5, e11104 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Welte, M.A., Gross, S.P., Postner, M., Block, S.M. & Wieschaus, E.F. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92, 547–557 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Sims, P.A. & Xie, X.S. Probing dynein and kinesin stepping with mechanical manipulation in a living cell. Chemphyschem. 10, 1511–1516 (2009). In vivo quantitative measurements of stepping sizes, stall forces and cooperativity of dynein and kinesin inside living cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Shubeita, G.T. et al. Consequences of motor copy number on the intracellular transport of kinesin-1–driven lipid droplets. Cell 135, 1098–1107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Shtridelman, Y., Cahyuti, T., Townsend, B., DeWitt, D. & Macosko, J.C. Force-velocity curves of motor proteins cooperating in vivo. Cell Biochem. Biophys. 52, 19–29 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Xu, J. et al. Casein kinase 2 reverses tail-independent inactivation of kinesin-1. Nat. Commun. 3, 754 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Iwai, S. & Uyeda, T. Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor. Proc. Natl. Acad. Sci. USA 105, 16882–16887 (2008).

    CAS  PubMed  Google Scholar 

  62. 62

    Pierobon, P. et al. Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys. J. 96, 4268–4275 (2009). Study of differences and similarities between myosin V motility in vitro and in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Robert, D., Nguyen, T.H., Gallet, F. & Wilhelm, C. In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS ONE 5, e10046 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Sun, M., Kawamura, R. & Marko, J.F. Micromechanics of human mitotic chromosomes. Phys. Biol. 8, 015003 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. 65

    Shimamoto, Y., Maeda, Y.T., Ishiwata, S., Libchaber, A.J. & Kapoor, T.M. Insights into the micromechanical properties of the metaphase spindle. Cell 145, 1062–1074 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Laan, L., Husson, J., Munteanu, E.L., Kerssemakers, J.W.J. & Dogterom, M. Force-generation and dynamic instability of microtubule bundles. Proc. Natl. Acad. Sci. USA 105, 8920–8925 (2008).

    CAS  PubMed  Google Scholar 

  67. 67

    Footer, M.J., Kerssemakers, J.W.J., Theriot, J.A. & Dogterom, M. Direct measurement of force generation by actin filament polymerization using an optical trap. Proc. Natl. Acad. Sci. USA 104, 2181–2186 (2007).

    CAS  PubMed  Google Scholar 

  68. 68

    Hsiao, S.C. et al. DNA-coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells. Angew. Chem. Int. Ed. Engl. 47, 8473–8477 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Lang, M.J., Fordyce, P.M., Engh, A.M., Neuman, K.C. & Block, S.M. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat. Methods 1, 133–139 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Lee, W.M., Reece, P.J., Marchington, R.F., Metzger, N.K. & Dholakia, K. Construction and calibration of an optical trap on a fluorescence optical microscope. Nat. Protoc. 2, 3226–3238 (2007).

    CAS  PubMed  Google Scholar 

  71. 71

    Vickery, S.A. & Dunn, R.C. Combining AFM and FRET for high resolution fluorescence microscopy. J. Microsc. 202, 408–412 (2001).

    CAS  PubMed  Google Scholar 

  72. 72

    Hernando, J. et al. Investigation of perylene photonic wires by combined single-molecule fluorescence and atomic force microscopy. Angew. Chem. Int. Ed. Engl. 43, 4045–4049 (2004).

    CAS  PubMed  Google Scholar 

  73. 73

    Rust, M.J., Bates, M. & Zhuang, X. Imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Fölling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943–945 (2008).

    PubMed  Google Scholar 

  75. 75

    Hell, S.W. Microscopy and its focal switch. Nat. Methods 6, 24–32 (2009).

    CAS  PubMed  Google Scholar 

  76. 76

    Finkelstein, I.J., Visnapuu, M.-L. & Greene, E.C. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468, 983–987 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Jin, J. et al. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nat. Struct. Mol. Biol. 17, 745–752 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Curtis, J., Koss, B. & Grier, D. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    CAS  Google Scholar 

  79. 79

    Garcés-Chávez, V., McGloin, D., Melville, H., Sibbett, W. & Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002).

    PubMed  Google Scholar 

  80. 80

    Tolić-Nørrelykke, I.M., Munteanu, E.L., Thon, G., Oddershede, L. & Berg-Sørensen, K. Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93, 078102 (2004).

    PubMed  Google Scholar 

  81. 81

    Jeon, J.H. et al. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011).

    PubMed  Google Scholar 

  82. 82

    Svoboda, K. & Block, S.M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994).

    CAS  PubMed  Google Scholar 

  83. 83

    Hansen, P.M., Bhatia, V., Harrit, N. & Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 5, 1937–1942 (2005).

    CAS  PubMed  Google Scholar 

  84. 84

    Seol, Y., Carpenter, A.E. & Perkins, T.T. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt. Lett. 31, 2429–2431 (2006).

    CAS  PubMed  Google Scholar 

  85. 85

    Liang, H. et al. Wavelength dependence of cell cloning efficiency after optical trapping. Biophys. J. 70, 1529–1533 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Leitz, G., Fällman, E., Tuck, S. & Axner, O. Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. Biophys. J. 82, 2224–2231 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Neuman, K.C., Chadd, E., Liou, G., Bergman, K. & Block, S. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999). Among the first quantifications of physiological damage exerted by optical trapping of living organisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Rasmussen, M.B., Oddershede, L. & Siegumfeldt, H. Optical tweezers cause physiological damage to E. coli and Listeria bacteria. Appl. Environ. Microbiol. 74, 2441–2446 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Peterman, E.J., Gittes, F. & Schmidt, C. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Bendix, P.M., Reihani, S.N.S. & Oddershede, L.B. Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. ACS Nano 4, 2256–2262 (2010).

    CAS  PubMed  Google Scholar 

  91. 91

    Berg-Sørensen, K. & Flyvbjerg, H. Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594–612 (2004).

    Google Scholar 

  92. 92

    Gittes, F. & Schmidt, C.F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).

    CAS  PubMed  Google Scholar 

  93. 93

    Tolić-Nørrelykke, S.F., Schaffer, E., Howard, J., Pavone, F.S., Julicher, F. & Flyvbjerg, H. Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77, 103101 (2006).

    Google Scholar 

  94. 94

    Fischer, M. & Berg-Sørensen, K. Calibration of trapping force and response function of optical tweezers in viscoelastic media. J. Opt. A: Pure Appl. Opt. 9, S239–S250 (2007).

    Google Scholar 

  95. 95

    Fischer, M., Richardson, A.C., Reihani, S.N.S., Oddershede, L.B. & Berg-Sørensen, K. Active-passive calibration of optical tweezers in viscoelastic media. Rev. Sci. Instrum. 81, 015103 (2010).

    PubMed  Google Scholar 

  96. 96

    Zlatanova, J. & Leuba, S. Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single molecule level. Biochem. Cell Biol. 81, 151–159 (2003).

    CAS  PubMed  Google Scholar 

  97. 97

    Lipfert, J., Kerssemakers, J., Jager, T. & Dekker, N. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat. Methods 7, 977–980 (2010).

    CAS  PubMed  Google Scholar 

  98. 98

    La Porta, A. & Wang, M.D. Optical torque wrench: angular trapping, rotation and torque detection of quartz microspheres. Phys. Rev. Lett. 92, 190801 (2004).

    PubMed  Google Scholar 

  99. 99

    Müller, D.J., Helenius, J., Alsteens, D. & Dufrêne, Y.F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009). Recommendable review of how AFMs have been used to probe properties of living cells' surfaces at the single-molecule level.

    PubMed  Google Scholar 

  100. 100

    Thomas, W.E., Vogel, V. & Sokurenko, E. Biophysics of catch bonds. Annu. Rev. Biophys. 37, 399–416 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges useful comments from E.J.G. Peterman, N.H. Dekker, C. Selhuber-Unkel and M.A. Sørensen and assistance with the illustrations from artist M. Høst. The author acknowledges financial support from the University of Copenhagen Excellence Program and from the Lundbeck Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lene B Oddershede.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oddershede, L. Force probing of individual molecules inside the living cell is now a reality. Nat Chem Biol 8, 879–886 (2012). https://doi.org/10.1038/nchembio.1082

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing