Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement

A Corrigendum to this article was published on 20 May 2013

This article has been updated

Abstract

A conserved iron-binding site, the ferroxidase center, regulates the vital iron storage role of the ubiquitous protein ferritin in iron metabolism. It is commonly thought that two Fe(II) simultaneously bind the ferroxidase center and that the oxidized Fe(III)-O(H)-Fe(III) product spontaneously enters the cavity of ferritin as a unit. In contrast, in some bacterioferritins and in archaeal ferritins a persistent di-iron prosthetic group in this center is believed to mediate catalysis of core formation. Using a combination of binding experiments and isotopically labeled 57Fe(II), we studied two systems in comparison: the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus (PfFtn) and the eukaryotic human H ferritin (HuHF). The results do not support either of the two paradigmatic models; instead they suggest a unifying mechanism in which the Fe(III)-O-Fe(III) unit resides in the ferroxidase center until it is sequentially displaced by Fe(II).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The conserved structure of 24-meric ferritin and its active center that catalyzes oxidation of Fe(II).
Figure 2: Presence of a conserved gateway to the ferroxidase center.
Figure 3: Transferrin scavenges Fe(III) from the ferroxidase center.
Figure 4: The fate of Fe(III) product in the ferroxidase center upon addition and oxidation of Fe(II).
Figure 5: EPR monitoring of the state of the Fe(III) product in the ferroxidase center after anaerobic addition of Fe(II).
Figure 6: Schematic representation of a model for the distribution of Fe(III) and Fe(II) after anaerobic addition of Fe(II) to ferritin containing two Fe(III) per subunit.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 19 April 2013

    In the version of this article initially published, the units (kJ mol−1) associated with the ΔH values reported in Table 1 were inadvertently omitted. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Theil, E.C. Ferritin—structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56, 289–315 (1987).

    Article  CAS  Google Scholar 

  2. Treffry, A., Harrison, P.M., Cleton, M.I., de Bruijn, W.C. & Mann, S. A note on the composition and properties of ferritin iron cores. J. Inorg. Biochem. 31, 1–6 (1987).

    Article  CAS  Google Scholar 

  3. Tatur, J., Hagedoorn, P.-L., Overeijnder, M. & Hagen, W. A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 10, 139–148 (2006).

    Article  CAS  Google Scholar 

  4. Rucker, P., Torti, F.M. & Torti, S.V. Role of H and L subunits in mouse ferritin. J. Biol. Chem. 271, 33352–33357 (1996).

    Article  CAS  Google Scholar 

  5. Dickey, L.F. et al. Differences in the regulation of messenger RNA for housekeeping and specialized-cell ferritin. A comparison of three distinct ferritin complementary DNAs, the corresponding subunits, and identification of the first processed in amphibia. J. Biol. Chem. 262, 7901–7907 (1987).

    PubMed  Google Scholar 

  6. Cheesman, M.R., Thomson, A.J., Greenwood, C., Moore, G.R. & Kadir, F. Bis-methionine axial ligation of haem in bacterioferritin from Pseudomonas aeruginosa. Nature 346, 771–773 (1990).

    Article  CAS  Google Scholar 

  7. Arosio, P. & Levi, S. Ferritin, iron homeostasis, and oxidative damage. Free Radic. Biol. Med. 33, 457–463 (2002).

    Article  CAS  Google Scholar 

  8. Ferreira, C. et al. Early embryonic lethality of H ferritin gene deletion in mice. J. Biol. Chem. 275, 3021–3024 (2000).

    Article  CAS  Google Scholar 

  9. Lange, S.J. & Que, L. Oxygen activating nonheme iron enzymes. Curr. Opin. Chem. Biol. 2, 159–172 (1998).

    Article  CAS  Google Scholar 

  10. Tatur, J., Hagen, W. & Matias, P. Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. J. Biol. Inorg. Chem. 12, 615–630 (2007).

    Article  CAS  Google Scholar 

  11. Stillman, T.J. et al. The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structures of the Fe3+ and Zn2+ derivatives. J. Mol. Biol. 307, 587–603 (2001).

    Article  CAS  Google Scholar 

  12. Yao, H. et al. Two distinct ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial ferritin (FtnA) and not a bacterioferritin (Bfr). Biochemistry 50, 5236–5248 (2011).

    Article  CAS  Google Scholar 

  13. Treffry, A., Hirzmann, J., Yewdall, S.J. & Harrison, P.M. Mechanism of catalysis of Fe(II) oxidation by ferritin H chains. FEBS Lett. 302, 108–112 (1992).

    Article  CAS  Google Scholar 

  14. Le Brun, N.E., Crow, A., Murphy, M.E.P., Mauk, A.G. & Moore, G.R. Iron core mineralisation in prokaryotic ferritins. Biochim. Biophys. Acta 1800, 732–744 (2010).

    Article  CAS  Google Scholar 

  15. Hwang, J. et al. A short Fe-Fe distance in peroxodiferric ferritin: control of Fe substrate versus cofactor decay? Science 287, 122–125 (2000).

    Article  CAS  Google Scholar 

  16. Treffry, A., Zhao, Z., Quail, M.A., Guest, J.R. & Harrison, P.M. How the presence of three iron binding sites affects the iron storage function of the ferritin (EcFtnA) of Escherichia coli. FEBS Lett. 432, 213–218 (1998).

    Article  CAS  Google Scholar 

  17. Tatur, J. & Hagen, W.R. The dinuclear iron-oxo ferroxidase center of Pyrococcus furiosus ferritin is a stable prosthetic group with unexpectedly high reduction potentials. FEBS Lett. 579, 4729–4732 (2005).

    Article  CAS  Google Scholar 

  18. Honarmand Ebrahimi, K., Hagedoorn, P.-L., Jongejan, J. & Hagen, W. Catalysis of iron core formation in Pyrococcus furiosus ferritin. J. Biol. Inorg. Chem. 14, 1265–1274 (2009).

    Article  CAS  Google Scholar 

  19. Weeratunga, S.K. et al. Structural studies of bacterioferritin B from Pseudomonas aeruginosa suggest a gating mechanism for iron uptake via the ferroxidase center. Biochemistry 49, 1160–1175 (2010).

    Article  CAS  Google Scholar 

  20. Crow, A., Lawson, T.L., Lewin, A., Moore, G.R. & Brun, N.E.L. Structural basis for iron mineralization by bacterioferritin. J. Am. Chem. Soc. 131, 6808–6813 (2009).

    Article  CAS  Google Scholar 

  21. Leavitt, S. & Freire, E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 11, 560–566 (2001).

    Article  CAS  Google Scholar 

  22. Levi, S. et al. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli. Biochemistry 28, 5179–5184 (1989).

    Article  CAS  Google Scholar 

  23. Levi, S. et al. Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J. Biol. Chem. 263, 18086–18092 (1988).

    CAS  PubMed  Google Scholar 

  24. Lawson, D.M. et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544 (1991).

    Article  CAS  Google Scholar 

  25. Masuda, T., Goto, F., Yoshihara, T. & Mikami, B. The universal mechanism for iron translocation to the ferroxidase site in ferritin, which is mediated by the well conserved transit site. Biochem. Biophys. Res. Commun. 400, 94–99 (2010).

    Article  CAS  Google Scholar 

  26. Masuda, T., Goto, F., Yoshihara, T. & Mikami, B. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin. J. Biol. Chem. 285, 4049–4059 (2010).

    Article  CAS  Google Scholar 

  27. Andrews, S.C. The Ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim. Biophys. Acta 1800, 691–705 (2010).

    Article  CAS  Google Scholar 

  28. Mathevon, C. et al. tRNA-modifying MiaE protein from Salmonella typhimurium is a nonheme diiron monooxygenase. Proc. Natl. Acad. Sci. USA 104, 13295–13300 (2007).

    Article  CAS  Google Scholar 

  29. Bou-Abdallah, F., Zhao, G., Mayne, H.R., Arosio, P. & Chasteen, N.D. Origin of the unusual kinetics of iron deposition in human H-chain ferritin. J. Am. Chem. Soc. 127, 3885–3893 (2005).

    Article  CAS  Google Scholar 

  30. Pereira, A.S. et al. Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization. Biochemistry 37, 9871–9876 (1998).

    Article  CAS  Google Scholar 

  31. St. Pierre, T.G. et al. Mössbauer spectroscopic studies of the cores of human, limpet and bacterial ferritins. Biochim. Biophys. Acta 870, 127–134 (1986).

    Article  CAS  Google Scholar 

  32. Mann, S., Williams, J.M., Treffry, A. & Harrison, P.M. Reconstituted and native iron-cores of bacterioferritin and ferritin. J. Mol. Biol. 198, 405–416 (1987).

    Article  CAS  Google Scholar 

  33. Paulsen, K.E. et al. Oxidation-reduction potentials of the methane monooxygenase hydroxylase component from Methylosinus trichosporium OB3b. Biochemistry 33, 713–722 (1994).

    Article  CAS  Google Scholar 

  34. Chasteen, N.D., Antanaitis, B.C. & Aisen, P. Iron deposition in apoferritin. Evidence for the formation of a mixed valence binuclear iron complex. J. Biol. Chem. 260, 2926–2929 (1985).

    CAS  PubMed  Google Scholar 

  35. Bauminger, E.R. et al. Iron (II) oxidation and early intermediates of iron-core formation in recombinant human H-chain ferritin. Biochem. J. 296, 709–719 (1993).

    Article  CAS  Google Scholar 

  36. Bou-Abdallah, F. et al. μ-1,2-Peroxobridged diiron(III) dimer formation in human H-chain ferritin. Biochem. J. 364, 57–63 (2002).

    Article  CAS  Google Scholar 

  37. Bauminger, E.R. et al. Stages in iron storage in the ferritin of Escherichia coli (EcFtnA):analysis of Mössbauer spectra reveals a new intermediate. Biochemistry 38, 7791–7802 (1999).

    Article  CAS  Google Scholar 

  38. Turano, P., Lalli, D., Felli, I.C., Theil, E.C. & Bertini, I. NMR reveals pathway for ferric mineral precursors to the central cavity of ferritin. Proc. Natl. Acad. Sci. USA 107, 545–550 (2010).

    Article  CAS  Google Scholar 

  39. Ha, Y., Shi, D., Small, G.W., Theil, E.C. & Allewell, N.M. Crystal structure of bullfrog M ferritin at 2.8-Å resolution: analysis of subunit interactions and the binuclear metal center. J. Biol. Inorg. Chem. 4, 243–256 (1999).

    Article  CAS  Google Scholar 

  40. Tosha, T., Ng, H.-L., Bhattasali, O., Alber, T. & Theil, E.C. Moving metal ions through ferritin−protein nanocages from three-fold pores to catalytic sites. J. Am. Chem. Soc. 132, 14562–14569 (2010).

    Article  CAS  Google Scholar 

  41. Bertini, I. et al. Structural insights into the ferroxidase site of ferritins from higher eukaryotes. J. Am. Chem. Soc. 134, 6169–6176 (2012).

    Article  CAS  Google Scholar 

  42. Hagen, W.R. Biomolecular EPR Spectroscopy (CRC Press, 2009).

  43. Hagen, W.R. EPR spectroscopy as a probe of metal centres in biological systems. Dalton Trans. 4415–4434 (2006).

Download references

Acknowledgements

The construct for production of recombinant HuHF was kindly provided by P. Arosio (University of Brescia). We thank L. van der Weel for assistance with expression of ferritin, M.J.F. Strampraad for technical assistance, D. Sordi for her assistance with the E129R mutation, M.M. Kabir for assistance with kinetic measurements and B. Mienert for Mössbauer measurements. This work was financially supported by a research grant from the Dutch National Research School Combination–Catalysis Controlled by Chemical Design (NRSC-C).

Author information

Authors and Affiliations

Authors

Contributions

K.H.E., P.-L.H. and W.R.H. designed the research; K.H.E. performed the experiments; K.H.E., P.-L.H., E.B. and W.R.H. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Wilfred R Hagen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honarmand Ebrahimi, K., Bill, E., Hagedoorn, PL. et al. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement. Nat Chem Biol 8, 941–948 (2012). https://doi.org/10.1038/nchembio.1071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing