Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Enzyme redesign guided by cancer-derived IDH1 mutations

Abstract

Mutations in an enzyme can result in a neomorphic catalytic activity in cancers. We applied cancer-associated mutations from isocitrate dehydrogenases to homologous residues in the active sites of homoisocitrate dehydrogenases to derive enzymes that catalyze the conversion of 2-oxoadipate to (R)-2-hydroxyadipate, a critical step for adipic acid production. Thus, we provide a prototypic example of how insights from cancer genome sequencing and functional studies can aid in enzyme redesign.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for enzyme mutagenesis.
Figure 2: ScHIDH mutants catalyze the NADH-linked production of 2-hydroxyadipate.

Similar content being viewed by others

References

  1. Dang, L. et al. Nature 462, 739–744 (2009).

    Article  CAS  Google Scholar 

  2. Niu, W., Draths, K.M. & Frost, J.W. Biotechnol. Prog. 18, 201–211 (2002).

    Article  CAS  Google Scholar 

  3. Noack, H., Georgiev, V., Blomberg, M.R., Siegbahn, P.E. & Johansson, A.J. Inorg. Chem. 50, 1194–1202 (2011).

    Article  CAS  Google Scholar 

  4. Sato, K., Aoki, M. & Noyori, R. Science 281, 1646–1647 (1998).

    Article  CAS  Google Scholar 

  5. Burgard, A.P., Pharkya, P. & Osterhout, R.E. Microorganisms for the production of adipic acid and other compounds. US patent 2010/0330626. (2010).

  6. Parthasarathy, A., Pierik, A.J., Kahnt, J., Zelder, O. & Buckel, W. Biochemistry 50, 3540–3550 (2011).

    Article  CAS  Google Scholar 

  7. Uhr, M.L., Thompson, V.W. & Cleland, W.W. J. Biol. Chem. 249, 2920–2927 (1974).

    CAS  PubMed  Google Scholar 

  8. Aktas, D.F. & Cook, P.F. Biochemistry 48, 3565–3577 (2009).

    Article  CAS  Google Scholar 

  9. Miyazaki, J., Kobashi, N., Nishiyama, M. & Yamane, H. J. Biol. Chem. 278, 1864–1871 (2003).

    Article  CAS  Google Scholar 

  10. Lin, Y. et al. Biochemistry 46, 890–898 (2007).

    Article  CAS  Google Scholar 

  11. Lin, Y. et al. Biochemistry 47, 4169–4180 (2008).

    Article  CAS  Google Scholar 

  12. Lin, Y., West, A.H. & Cook, P.F. Biochemistry 48, 7305–7312 (2009).

    Article  CAS  Google Scholar 

  13. Chen, R. & Jeong, S.S. Protein Sci. 9, 2344–2353 (2000).

    Article  CAS  Google Scholar 

  14. Parsons, D.W. et al. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  15. Mardis, E.R. et al. N. Engl. J. Med. 361, 1058–1066 (2009).

    Article  CAS  Google Scholar 

  16. Yan, H. et al. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  Google Scholar 

  17. Ward, P.S. et al. Cancer Cell 17, 225–234 (2010).

    Article  CAS  Google Scholar 

  18. Xu, X. et al. J. Biol. Chem. 279, 33946–33957 (2004).

    Article  CAS  Google Scholar 

  19. Bulfer, S.L., Hendershot, J.M. & Trievel, R.C. Proteins 80, 661–666 (2012).

    Article  CAS  Google Scholar 

  20. Struys, E.A., Jansen, E.E., Verhoeven, N.M. & Jakobs, C. Clin. Chem. 50, 1391–1395 (2004).

    Article  CAS  Google Scholar 

  21. Jin, G. et al. PLoS ONE 6, e16812 (2011).

    Article  CAS  Google Scholar 

  22. Kranendijk, M., Struys, E.A., Salomons, G.S., Van der Knaap, M.S. & Jakobs, C. J. Inherit. Metab. Dis. 35, 571–587 (2012).

    Article  CAS  Google Scholar 

  23. Pietrak, B. et al. Biochemistry 50, 4804–4812 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by US National Institutes of Health grant R01 CA1403160 (H.Y.). We thank P.F. Cook at the University of Oklahoma for an HIDH expression plasmid, E. Spana at Duke University for S. cerevisiae genomic DNA, P. Fan for technical assistance and I. Fridovich and I. Batinic-Haberle for feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.J.R. and B.D.C. performed experiments and wrote the manuscript; I.S. performed LC/MS/MS analysis; D.D.B. and J.H.S. provided reagents; H.Y. contributed reagents, funding, and critical feedback on the manuscript.

Corresponding author

Correspondence to Hai Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitman, Z., Choi, B., Spasojevic, I. et al. Enzyme redesign guided by cancer-derived IDH1 mutations. Nat Chem Biol 8, 887–889 (2012). https://doi.org/10.1038/nchembio.1065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1065

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer