Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The physical state of lipid substrates provides transacylation specificity for tafazzin

Abstract

Cardiolipin is a mitochondrial phospholipid with a characteristic acyl chain composition that depends on the function of tafazzin, a phospholipid-lysophospholipid transacylase, although the enzyme itself lacks acyl specificity. We incubated isolated tafazzin with various mixtures of phospholipids and lysophospholipids, characterized the lipid phase by 31P-NMR and measured newly formed molecular species by MS. Substantial transacylation was observed only in nonbilayer lipid aggregates, and the substrate specificity was highly sensitive to the lipid phase. In particular, tetralinoleoyl-cardiolipin, a prototype molecular species, formed only under conditions that favor the inverted hexagonal phase. In isolated mitochondria, <1% of lipids participated in transacylations, suggesting that the action of tafazzin was limited to privileged lipid domains. We propose that tafazzin reacts with non–bilayer-type lipid domains that occur in curved or hemifused membrane zones and that acyl specificity is driven by the packing properties of these domains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transacylations are affected by the physical state of the substrates.
Figure 2: Transacylations of CL but not of PE and PG are affected by Ca2+.
Figure 3: Transacylations in PC-LPC mixtures.
Figure 4: Transition into the hexagonal phase state induces acyl specificity.
Figure 5: Acyl-specific CL-PC remodeling in vitro.
Figure 6: Tafazzin and lipid packing.

Similar content being viewed by others

References

  1. Ma, L., Vaz, F.M., Gu, Z., Wanders, R.J.A. & Greenberg, M.L. The human TAZ gene complements mitochondrial dysfunction in the yeast taz1Δ mutant. Implications for Barth syndrome. J. Biol. Chem. 279, 44394–44399 (2004).

    Article  CAS  Google Scholar 

  2. Testet, E. et al. Ypr140wp, 'the yeast tafazzin', displays a mitochondrial lysophosphatidylcholine (lyso-PC) acyltransferase activity related to triacylglycerol and mitochondrial lipid synthesis. Biochem. J. 387, 617–626 (2005).

    Article  CAS  Google Scholar 

  3. Claypool, S.M., McCaffery, J.M. & Koehler, C.M. Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins. J. Cell Biol. 174, 379–390 (2006).

    Article  CAS  Google Scholar 

  4. Xu, Y. et al. Characterization of tafazzin splice variants from humans and fruit flies. J. Biol. Chem. 284, 29230–29239 (2009).

    Article  CAS  Google Scholar 

  5. Xu, Y., Malhotra, A., Ren, M. & Schlame, M. The enzymatic function of tafazzin. J. Biol. Chem. 281, 39217–39224 (2006).

    Article  CAS  Google Scholar 

  6. Bione, S. et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat. Genet. 12, 385–389 (1996).

    Article  CAS  Google Scholar 

  7. Vreken, P. et al. Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem. Biophys. Res. Commun. 279, 378–382 (2000).

    Article  CAS  Google Scholar 

  8. Gu, Z. et al. Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol. Microbiol. 51, 149–158 (2004).

    Article  CAS  Google Scholar 

  9. Xu, Y. et al. A Drosophila model of Barth syndrome. Proc. Natl. Acad. Sci. USA 103, 11584–11588 (2006).

    Article  CAS  Google Scholar 

  10. Acehan, D., Xu, Y., Stokes, D.L. & Schlame, M. Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography. Lab. Invest. 87, 40–48 (2007).

    Article  CAS  Google Scholar 

  11. Claypool, S.M., Boontheung, P., McCaffery, J.M., Loo, J.A. & Koehler, C.M. The cardiolipin transacylase, tafazzin, associates with two distinct respiratory components providing insight into Barth syndrome. Mol. Biol. Cell 19, 5143–5155 (2008).

    Article  CAS  Google Scholar 

  12. Acehan, D. et al. Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J. Biol. Chem. 286, 899–908 (2011).

    Article  CAS  Google Scholar 

  13. Acehan, D. et al. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys. J. 100, 2184–2192 (2011).

    Article  CAS  Google Scholar 

  14. Malhotra, A., Xu, Y., Ren, M. & Schlame, M. Formation of molecular species of mitochondrial cardiolipin. 1. A novel transacylation mechanism to shuttle fatty acids between sn-1 and sn-2 positions of multiple phospholipid species. Biochim. Biophys. Acta 1791, 314–320 (2009).

    Article  CAS  Google Scholar 

  15. Schlame, M. et al. Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann. Neurol. 51, 634–637 (2002).

    Article  CAS  Google Scholar 

  16. Vaz, F.M., Houtkooper, R.H., Valianpour, F., Barth, P.G. & Wanders, R.J.A. Only one splice variant of the human TAZ gene encodes a functional protein with a role in cardiolipin metabolism. J. Biol. Chem. 278, 43089–43094 (2003).

    Article  CAS  Google Scholar 

  17. Beranek, A. et al. Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast. J. Biol. Chem. 284, 11572–11578 (2009).

    Article  CAS  Google Scholar 

  18. Schlame, M. Formation of molecular species of mitochondrial cardiolipin. 2. A mathematical model of pattern formation by phospholipid transacylation. Biochim. Biophys. Acta 1791, 321–325 (2009).

    Article  CAS  Google Scholar 

  19. McLaughlin, A.C., Cullis, P.R., Berden, J.A. & Richards, R.E. 31P NMR of phospholipid membranes: effects of chemical shift anisotropy at high magnetic field strengths. J. Magn. Reson. 20, 146–165 (1975).

    CAS  Google Scholar 

  20. Rand, R.P. & Sengupta, S. Cardiolipin forms hexagonal structures with divalent cations. Biochim. Biophys. Acta 255, 484–492 (1972).

    Article  CAS  Google Scholar 

  21. Sankaram, M.B., Powell, G.L. & Marsh, D. Effect of acyl chain composition on salt-induced lamellar to inverted hexagonal phase transitions in cardiolipin. Biochim. Biophys. Acta 980, 389–392 (1989).

    Article  CAS  Google Scholar 

  22. De Kruijff, B. et al. Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin. Biochim. Biophys. Acta 693, 1–12 (1982).

    Article  CAS  Google Scholar 

  23. Shulga, Y.V., Topham, M.K. & Epand, R.M. Study of arachidonoyl specificity in two enzymes of the PI cycle. J. Mol. Biol. 409, 101–112 (2011).

    Article  CAS  Google Scholar 

  24. Israelachvili, J.N., Marcelja, S. & Horn, R.G. Physical principles of membrane organization. Q. Rev. Biophys. 13, 121–200 (1980).

    Article  CAS  Google Scholar 

  25. Thurmond, R.L., Lindblom, G. & Brown, M.F. Curvature, order, and dynamics of lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochemistry 32, 5394–5410 (1993).

    Article  CAS  Google Scholar 

  26. Otten, D., Löbbecke, L. & Beyer, K. Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry. Biophys. J. 68, 584–597 (1995).

    Article  CAS  Google Scholar 

  27. Cullis, P.R. & de Kruijff, B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559, 399–420 (1979).

    Article  CAS  Google Scholar 

  28. Cullis, P.R. et al. Structural properties of phospholipids in the rat liver inner mitochondrial membrane. Biochim. Biophys. Acta 600, 625–635 (1980).

    Article  CAS  Google Scholar 

  29. De Kruijff, B., Nayar, R. & Cullis, P.R. 31P-NMR studies on phospholipid structure in membranes of intact, functionally-active rat liver mitochondria. Biochim. Biophys. Acta 684, 47–52 (1982).

    Article  CAS  Google Scholar 

  30. Nicolay, K., van der Neut, R., Fok, J.J. & de Kruijff, B. Effect of adriamycin on lipid polymorphism in cardiolipin-containing model and mitochondrial membranes. Biochim. Biophys. Acta 819, 55–65 (1985).

    Article  CAS  Google Scholar 

  31. Chernomordik, L.V. & Kozlov, M.M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008).

    Article  CAS  Google Scholar 

  32. Nishizawa, M. & Nishizawa, K. Curvature-driven lipid sorting: coarse-grained dynamics simulation of a membrane mimicking a hemifusion intermediate. J. Biophys. Chem. 1, 86–95 (2010).

    Article  CAS  Google Scholar 

  33. Montessuit, S. et al. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142, 889–901 (2010).

    Article  CAS  Google Scholar 

  34. Davies, K.M. et al. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. USA 108, 14121–14126 (2011).

    Article  CAS  Google Scholar 

  35. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  36. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

  37. Cook, A.M. & Daughton, C.G. Total phosphorus determination by spectrophotometry. Methods Enzymol. 72, 292–295 (1981).

    Article  CAS  Google Scholar 

  38. Sun, G. et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal. Chem. 80, 7576–7585 (2008).

    Article  CAS  Google Scholar 

  39. Schlame, M. et al. Comparison of cardiolipins from Drosophila strains with mutations in putative remodeling enzymes. Chem. Phys. Lipids 165, 512–519 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. De Kruijff for stimulating discussions. This work was supported by the Barth Syndrome Foundation, by the National Institutes of Health (HL078788 to M.S., HL091154 to M.R., 1U54GM094598 to D.L.S.) and by the Canadian Natural Sciences and Engineering Research Council (9848 to R.M.E.).

Author information

Authors and Affiliations

Authors

Contributions

M.S. conceived and designed the study, performed experiments, analyzed data and wrote the paper. D.A., B.B., Y.X. and S.V. performed experiments, analyzed data and interpreted the results. M.R. and D.L.S. gave technical support and conceptual advice. R.M.E. designed and performed experiments, analyzed data and revised the manuscript.

Corresponding author

Correspondence to Michael Schlame.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 2337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlame, M., Acehan, D., Berno, B. et al. The physical state of lipid substrates provides transacylation specificity for tafazzin. Nat Chem Biol 8, 862–869 (2012). https://doi.org/10.1038/nchembio.1064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing