Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain

Abstract

Cyclization of linear peptidyl precursors produced by nonribosomal peptide synthetases (NRPSs) is an important step in the biosynthesis of bioactive cyclic peptides. Whereas bacterial NRPSs use thioesterase domains to perform the cyclization, fungal NRPSs have apparently evolved to use a different enzymatic route. In verified fungal NRPSs that produce macrocyclic peptides, each megasynthetase terminates with a condensation-like (CT) domain that may perform the macrocyclization reaction. To probe the role of such a CT domain, we reconstituted the activities of the Penicillium aethiopicum trimodular NPRS TqaA in Saccharomyces cerevisiae and in vitro. Together with the reconstituted bimodular NRPS AnaPS, we dissected the cyclization steps of TqaA in transforming the linear anthranilate-D-tryptophan-L-alanyl tripeptide into fumiquinazoline F. Extensive biochemical and mutational studies confirmed the essential role of the CT domain in catalyzing cyclization in a thiolation domain–dependent fashion. Our work provides evidence of a likely universal macrocyclization strategy used by fungal NRPSs.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Fungal NRPSs that terminate with a C-like domain.
Figure 2: Proposed cyclization mechanisms.
Figure 3: Characterization of TqaA and AnaPS.
Figure 4: The cyclization steps of TqaA and AnaPS.
Figure 5: Probing the possible TqaA CT domain cyclization mechanisms using analogs of the tripeptide 3.

References

  1. Bierer, B.E., Hollander, G., Fruman, D. & Burakoff, S.J. Cyclosporine A and FK506: molecular mechanisms of immunosuppression and probes for transplantation biology. Curr. Opin. Immunol. 5, 763–773 (1993).

    CAS  Article  Google Scholar 

  2. Chen, S.C., Slavin, M.A. & Sorrell, T.C. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs 71, 11–41 (2011).

    Article  Google Scholar 

  3. Sieber, S.A. & Marahiel, M.A. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev. 105, 715–738 (2005).

    CAS  Article  Google Scholar 

  4. Sattely, E.S., Fischbach, M.A. & Walsh, C.T. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat. Prod. Rep. 25, 757–793 (2008).

    CAS  Article  Google Scholar 

  5. Fischbach, M.A. & Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    CAS  Article  Google Scholar 

  6. Kohli, R.M., Walsh, C.T. & Burkart, M.D. Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418, 658–661 (2002).

    CAS  Article  Google Scholar 

  7. Kopp, F. & Marahiel, M.A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat. Prod. Rep. 24, 735–749 (2007).

    CAS  Article  Google Scholar 

  8. Du, L. & Lou, L.L. PKS and NRPS release mechanisms. Nat. Prod. Rep. 27, 255–278 (2010).

    CAS  Article  Google Scholar 

  9. von Döhren, H. A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet. Biol. 46, S45–S52 (2009).

    Article  Google Scholar 

  10. Eisfeld, K. Non-Ribosomal Peptide Synthetases of Fungi. in Physiology and Genetics 1st edn., Vol. 15 (eds. Anke, T. & Weber, D.) 315–316 (Springer-Verlag, Berlin Heidelberg, 2009).

  11. Lawen, A. & Zocher, R. Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. J. Biol. Chem. 265, 11355–11360 (1990).

    CAS  PubMed  Google Scholar 

  12. Jin, J.M. et al. Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum. Mol. Microbiol. 76, 456–466 (2010).

    CAS  Article  Google Scholar 

  13. Slightom, J.L., Metzger, B.R., Luu, H.T. & Elhammer, A.P. Cloning and molecular characterization of the gene encoding the aureobasidin A biosynthesis complex in Aureobasidium pullulans BP-1938. Gene 431, 67–79 (2009).

    CAS  Article  Google Scholar 

  14. Winterberg, B. et al. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol. Microbiol. 75, 1260–1271 (2010).

    CAS  Article  Google Scholar 

  15. Zocher, R. et al. Biosynthesis of cyclosporin A: partial purification and properties of a multifunctional enzyme from Tolypocladium inflatum. Biochemistry 25, 550–553 (1986).

    CAS  Article  Google Scholar 

  16. Gao, X. et al. Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J. Am. Chem. Soc. 133, 2729–2741 (2011).

    CAS  Article  Google Scholar 

  17. Bergendahl, V., Linne, U. & Marahiel, M.A. Mutational analysis of the C-domain in nonribosomal peptide synthesis. Eur. J. Biochem. 269, 620–629 (2002).

    CAS  Article  Google Scholar 

  18. Keating, T.A., Marshall, C.G., Walsh, C.T. & Keating, A.E. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat. Struct. Biol. 9, 522–526 (2002).

    CAS  PubMed  Google Scholar 

  19. Samel, S.A., Schoenafinger, G., Knappe, T.A., Marahiel, M.A. & Essen, L.O. Structural and functional insights into a peptide bond–forming bidomain from a nonribosomal peptide synthetase. Structure 15, 781–792 (2007).

    CAS  Article  Google Scholar 

  20. Ames, B.D. & Walsh, C.T. Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry 49, 3351–3365 (2010).

    CAS  Article  Google Scholar 

  21. Ames, B.D., Liu, X. & Walsh, C.T. Enzymatic processing of fumiquinazoline F: a tandem oxidative-acylation strategy for the generation of multicyclic scaffolds in fungal indole alkaloid biosynthesis. Biochemistry 49, 8564–8576 (2010).

    CAS  Article  Google Scholar 

  22. Yin, W.B., Grundmann, A., Cheng, J. & Li, S.M. Acetylaszonalenin biosynthesis in Neosartorya fischeri. Identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes by biochemical investigation. J. Biol. Chem. 284, 100–109 (2009).

    CAS  Article  Google Scholar 

  23. Shao, Z., Zhao, H. & Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37, e16 (2009).

    Article  Google Scholar 

  24. Ma, S.M. et al. Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326, 589–592 (2009).

    CAS  Article  Google Scholar 

  25. Mootz, H.D., Schorgendorfer, K. & Marahiel, M.A. Functional characterization of 4′ phosphopantetheinyl transferase genes of bacterial and fungal origin by complementation of Saccharomyces cerevisiae lys5. FEMS Microbiol. Lett. 213, 51–57 (2002).

    CAS  PubMed  Google Scholar 

  26. Xu, W., Cai, X.L., Jung, M.E. & Tang, Y. Analysis of intact and dissected fungal polyketide synthase-nonribosomal peptide synthetase in vitro and in Saccharomyces cerevisiae. J. Am. Chem. Soc. 132, 13604–13607 (2010).

    CAS  Article  Google Scholar 

  27. Rusnak, F., Sakaitani, M., Drueckhammer, D., Reichert, J. & Walsh, C.T. Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entf gene, expression and purification of Entf, and analysis of covalent phosphopantetheine. Biochemistry 30, 2916–2927 (1991).

    CAS  Article  Google Scholar 

  28. Stachelhaus, T. & Walsh, C.T. Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry 39, 5775–5787 (2000).

    CAS  Article  Google Scholar 

  29. Linne, U. & Marahiel, M.A. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry 39, 10439–10447 (2000).

    CAS  Article  Google Scholar 

  30. Sieber, S.A., Tao, J.H., Walsh, C.T. & Marahiel, M.A. Peptidyl thiophenols as substrates for nonribosomal peptide cyclases. Angew. Chem. Int. Edn Engl. 43, 493–498 (2004).

    CAS  Article  Google Scholar 

  31. Quadri, L.E.N. et al. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37, 1585–1595 (1998).

    CAS  Article  Google Scholar 

  32. Xie, X., Meehan, M.J., Xu, W., Dorrestein, P.C. & Tang, Y. Acyltransferase mediated polyketide release from a fungal megasynthase. J. Am. Chem. Soc. 131, 8388–8389 (2009).

    CAS  Article  Google Scholar 

  33. Balibar, C.J. & Walsh, C.T. GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 45, 15029–15038 (2006).

    CAS  Article  Google Scholar 

  34. Keating, T.A., Miller, D.A. & Walsh, C.T. Expression, purification, and characterization of HMWP2, a 229 kDa, six domain protein subunit of yersiniabactin synthetase. Biochemistry 39, 4729–4739 (2000).

    CAS  Article  Google Scholar 

  35. Lee, J.H., Evans, B.S., Li, G.Y., Kelleher, N.L. & van der Donk, W.A. In vitro characterization of a heterologously expressed nonribosomal peptide synthetase involved in phosphinothricin tripeptide biosynthesis. Biochemistry 48, 5054–5056 (2009).

    CAS  Article  Google Scholar 

  36. Ames, B.D. et al. Complexity generation in fungal peptidyl alkaloid biosynthesis: oxidation of fumiquinazoline A to the heptacyclic hemiaminal fumiquinazoline C by the flavoenzyme Af12070 from Aspergillus fumigatus. Biochemistry 50, 8756–8769 (2011).

    CAS  Article  Google Scholar 

  37. Daniel, J.F.D. & Rodrigues, E. Peptaibols of Trichoderma. Nat. Prod. Rep. 24, 1128–1141 (2007).

    CAS  Article  Google Scholar 

  38. Liu, X. & Walsh, C.T. Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochemistry 48, 8746–8757 (2009).

    CAS  Article  Google Scholar 

  39. Sims, J.W. & Schmidt, E.W. Thioesterase-like role for fungal PKS-NRPS hybrid reductive domains. J. Am. Chem. Soc. 130, 11149–11155 (2008).

    CAS  Article  Google Scholar 

  40. Wang, B., Kang, Q., Lu, Y., Bai, L. & Wang, C. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc. Natl. Acad. Sci. USA 109, 1287–1292 (2012).

    CAS  Article  Google Scholar 

  41. Grindberg, R.V. et al. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS ONE 6, e18565 (2011).

    CAS  Article  Google Scholar 

  42. Gatto, G.J., McLoughlin, S.M., Kelleher, N.L. & Walsh, C.T. Elucidating the substrate specificity and condensation domain activity of FkbP, the FK520 pipecolate-incorporating enzyme. Biochemistry 44, 5993–6002 (2005).

    CAS  Article  Google Scholar 

  43. Schwecke, T. et al. The biosynthetic gene-cluster for the polyketide immunosuppressant rapamycin. Proc. Natl. Acad. Sci. USA 92, 7839–7843 (1995).

    CAS  Article  Google Scholar 

  44. Sieber, S.A., Walsh, C.T. & Marahiel, M.A. Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains. J. Am. Chem. Soc. 125, 10862–10866 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the US National Institutes of Health Grant GM20011 (to C.T.W.), F32GM090475 (to B.D.A.) and 1R01GM092217 (to Y.T.). W. Xu (University of California–Los Angeles) is thanked for assistance with MALDI-TOF mass analysis and for providing both the ApdA and LovF ACP domains. Y.-T. Lai (University of California–Los Angeles) is thanked for assistance with gel filtration FPLC.

Author information

Authors and Affiliations

Authors

Contributions

X.G., S.W.H., C.T.W. and Y.T. developed the hypothesis and designed the study. S.W.H. performed the synthesis of all of the chemicals in this study. X.G. and P.W. performed molecular cloning. X.G., P.W. and L.P.V. performed the heterologous protein expression and purification. X.G. and B.D.A. performed in vitro and in vivo characterization of the megasynthases. All authors analyzed and discussed the results. X.G., C.T.W. and Y.T. prepared the manuscript.

Corresponding authors

Correspondence to Christopher T Walsh or Yi Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2897 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gao, X., Haynes, S., Ames, B. et al. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat Chem Biol 8, 823–830 (2012). https://doi.org/10.1038/nchembio.1047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1047

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing