Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient GPI-anchored protein homodimers are units for raft organization and function

Abstract

Advanced single-molecule fluorescent imaging was applied to study the dynamic organization of raft-associated glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the plasma membrane and their stimulation-induced changes. In resting cells, virtually all of the GPI-APs are mobile and continually form transient (200 ms) homodimers (termed homodimer rafts) through ectodomain protein interactions, stabilized by the presence of the GPI-anchoring chain and cholesterol. Heterodimers do not form, suggesting a fundamental role for the specific ectodomain protein interaction. Under higher physiological expression conditions , homodimers coalesce to form hetero– and homo–GPI-AP oligomer rafts through raft-based lipid interactions. When CD59 was ligated, it formed stable oligomer rafts containing up to four CD59 molecules, which triggered intracellular Ca2+ responses that were dependent on GPI anchorage and cholesterol, suggesting a key part played by transient homodimer rafts. Transient homodimer rafts are most likely one of the basic units for the organization and function of raft domains containing GPI-APs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for the MAC-induced CD59 cluster raft and signaling and transient homocolocalization of GPI-APs in steady-state cells.
Figure 2: Single-molecule FRET between ACP-CD59 molecules.
Figure 3: Two-color single-molecule tracking did not detect prolonged colocalization of hetero-GPI-APs.
Figure 4: GPI-AP homodimers are stabilized by raft-lipid interactions, forming GPI-AP homodimer rafts, whereas raft-lipid interaction alone without ectodomain protein interaction can hardly induce GPI-AP heterodimer rafts.
Figure 5: The fractions of transient (apparent) homo-oligomers of ACP-CD59 increased with increased expression.
Figure 6: MAC induced stable CD59-oligomer rafts (MAC-rafts) dependent on dynamic CD59 homodimers.
Figure 7: MAC-rafts are stable, undergo repeated diffusion-STALL cycles and induce an intracellular Ca2+ response.

Similar content being viewed by others

References

  1. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  2. Chung, I. et al. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464, 783–787 (2010).

    Article  CAS  Google Scholar 

  3. Lillemeier, B.F. et al. TCR and Lat expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    Article  CAS  Google Scholar 

  4. Williamson, D.J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–662 (2011).

    Article  CAS  Google Scholar 

  5. Tavano, R. et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat. Cell Biol. 8, 1270–1276 (2006).

    Article  CAS  Google Scholar 

  6. Sohn, H.W., Tolar, P. & Pierce, S.K. Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J. Cell Biol. 182, 367–379 (2008).

    Article  CAS  Google Scholar 

  7. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998).

    Article  CAS  Google Scholar 

  8. Chen, Y., Thelin, W.R., Yang, B., Milgram, S.L. & Jacobson, K. Transient anchorage of cross-linked glycosylphosphatidylinositol-anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides. J. Cell Biol. 175, 169–178 (2006).

    Article  CAS  Google Scholar 

  9. Simons, K. & Gerl, M.J. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688–699 (2010).

    Article  CAS  Google Scholar 

  10. Stefanová, I., Horejsi, V., Ansotegui, I.J., Knapp, W. & Stockinger, H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–1019 (1991).

    Article  Google Scholar 

  11. Suzuki, K.G.N., Fujiwara, T.K., Edidin, M. & Kusumi, A. Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol. 177, 731–742 (2007a).

    Article  CAS  Google Scholar 

  12. Suzuki, K.G.N. et al. GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177, 717–730 (2007b).

    Article  CAS  Google Scholar 

  13. Field, K.A., Holowka, D. & Baird, B. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J. Biol. Chem. 272, 4276–4280 (1997).

    Article  CAS  Google Scholar 

  14. Kusumi, A., Koyama-Honda, I. & Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230 (2004).

    Article  CAS  Google Scholar 

  15. Lingwood, D., Ries, J., Schwille, P. & Simons, K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl. Acad. Sci. USA 105, 10005–10010 (2008).

    Article  CAS  Google Scholar 

  16. Wu, M., Holowka, D., Craighead, H.G. & Baird, B. Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proc. Natl. Acad. Sci. USA 101, 13798–13803 (2004).

    Article  CAS  Google Scholar 

  17. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  CAS  Google Scholar 

  18. Lenne, P.F. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).

    Article  CAS  Google Scholar 

  19. Lasserre, R. et al. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat. Chem. Biol. 4, 538–547 (2008).

    Article  CAS  Google Scholar 

  20. Plowman, S.J., Muncke, C., Parton, R.G. & Hancock, J.F. H-ras, K-ras, and plasma membrane raft proteins operate in nanoclusters with differential dependence on actin cytoskeleton. Proc. Natl. Acad. Sci. USA 102, 15500–15505 (2005).

    Article  CAS  Google Scholar 

  21. Sahl, S.J., Leutenegger, M., Hilbert, M., Hell, S.W. & Eggeling, C. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc. Natl. Acad. Sci. USA 107, 6829–6834 (2010).

    Article  CAS  Google Scholar 

  22. van Zanten, T.S. et al. F. Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc. Natl. Acad. Sci. USA 106, 18557–18562 (2009).

    Article  CAS  Google Scholar 

  23. Koyama-Honda, I. et al. Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys. J. 88, 2126–2136 (2005).

    Article  CAS  Google Scholar 

  24. Kasai, R.S. et al. A. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192, 463–480 (2011).

    Article  CAS  Google Scholar 

  25. Rivier, A.S. et al. Exit of GPI-anchored proteins from the ER differs in yeast and mammalian cells. Traffic 11, 1017–1033 (2010).

    Article  CAS  Google Scholar 

  26. Dunne, P.D. et al. DySCo: quantitating associations of membrane proteins using two-color single-molecule tracking. Biophys. J. 97, L5–L7 (2009).

    Article  Google Scholar 

  27. Keuning, S., Janssen, D.B. & Witholt, B. Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobactor autotrophicus GJ10. J. Bacteriol. 163, 635–639 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rock, C.O. & Cronan, J.E. Jr. Re-evaluation of the solution structure of acyl carrier protein. J. Biol. Chem. 254, 9778–9785 (1979).

    CAS  PubMed  Google Scholar 

  29. Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).

    Article  CAS  Google Scholar 

  30. Kwik, J. et al. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl. Acad. Sci. USA 100, 13964–13969 (2003).

    Article  CAS  Google Scholar 

  31. Omidvar, N. et al. Expression of glycophosphatidylinositol-acnhored CD59 on target cells enhances human NK cell–mediated cytotoxicity. J. Immunol. 176, 2915–2923 (2006).

    Article  CAS  Google Scholar 

  32. Rudd, P.M. et al. The glycosylation of the complement regulatory protein, human erythrocyte CD59. J. Biol. Chem. 272, 7229–7244 (1997).

    Article  CAS  Google Scholar 

  33. Catino, M.A., Paladino, S., Tivodar, S., Pocard, T. & Zurzolo, C. N- and O-glycans are not directly involved in the oligomerization and apical sorting of GPI proteins. Traffic 9, 2141–2150 (2008).

    Article  CAS  Google Scholar 

  34. Brameshuber, M. et al. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J. Biol. Chem. 285, 41765–41771 (2010).

    Article  CAS  Google Scholar 

  35. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Visualization of interactions among βZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    Article  CAS  Google Scholar 

  36. Friedrichson, T. & Kurzchalia, T.V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).

    Article  CAS  Google Scholar 

  37. Paladino, S. et al. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167, 699–709 (2004).

    Article  CAS  Google Scholar 

  38. Yang, F., Moss, G. & Philips, G.N. Jr. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  Google Scholar 

  39. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFP into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  Google Scholar 

  40. Meyer, B.H. et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. USA 103, 2138–2143 (2006).

    Article  CAS  Google Scholar 

  41. Huang, Y., Fedarovich, A., Tomlinson, S. & Davies, C. Crystal structure of CD59: implications for molecular recognition of the complement proteins C8 and C9 in the membrane-attack complex. Acta Crystallogr. D Biol. Crystallogr. 63, 714–721 (2007).

    Article  CAS  Google Scholar 

  42. Lingwood, D. et al. Cholesterol modulates glycolipid conformation and receptor activity. Nat. Chem. Biol. 7, 260–262 (2011).

    Article  CAS  Google Scholar 

  43. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    Article  CAS  Google Scholar 

  44. Fujita, A. et al. Gangliosides GM1 and GM3 in the living cell membrane from clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell 18, 2112–2122 (2007).

    Article  CAS  Google Scholar 

  45. Lommerse, P.H. et al. Single-molecule diffusion reveals similar mobility for the Lck, H-ras, and K-ras membrane anchors. Biophys. J. 91, 1090–1097 (2006).

    Article  CAS  Google Scholar 

  46. Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  CAS  Google Scholar 

  47. Yokosuka, T. & Saito, T. Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters. Immunol. Rev. 229, 27–40 (2009).

    Article  CAS  Google Scholar 

  48. Gaus, K., Chklovskaia, E., Fazekas de St. Groth, B., Jessup, W. & Harder, T. Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131 (2005).

    Article  CAS  Google Scholar 

  49. De Nardo, C. et al. Recombinant transmembrane CD59 (CD59TM) confers complement resistance to GPI-anchored protein defective melanoma cells. J. Cell. Physiol. 190, 200–206 (2002).

    Article  CAS  Google Scholar 

  50. Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat. Cell Biol. 3, 140–149 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Horejsi (Institute of Molecular Genetics, Academy of Sciences of the Czech Republic), M. Tone (University of Oxford) and M. Maio (Istituto Nazionale di Ricovero e Cura a Carattere Scientifico) for the hybridoma lines that produce the CD59- and DAF-specific antibodies, the cDNA construct for human CD59, and that for CD59TM, respectively. This work was supported in part by Grants-in-Aid for Scientific Research (A12020366) and Specific Research on Innovative Areas (23110002, 233306) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese government and by the Development of Systems and Technology for Advanced Measurement and Analysis program of the Japan Science and Technology Agency (10101506).

Author information

Authors and Affiliations

Authors

Contributions

K.G.N.S. performed experiments. T.K.F. and A.K. developed the TIRF microscope system. Y.M. developed the pOsTet15T3 vector. K.M.H., Y.L.N. and M.I. helped the data analysis. K.G.N.S., R.S.K. and A.K. formulated the project. K.G.N.S. and A.K. wrote the manuscript.

Corresponding author

Correspondence to Akihiro Kusumi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 11291 kb)

Supplementary Movie 1

NCHEMB-A111107315C-SupplementaryMovie1.avi (AVI 3455 kb)

Supplementary Movie 2

NCHEMB-A111107315C-SupplementaryMovie2.avi (AVI 11039 kb)

Supplementary Movie 3

NCHEMB-A111107315C-SupplementaryMovie3.avi (AVI 7869 kb)

Supplementary Movie 4

NCHEMB-A111107315C-SupplementaryMovie4.avi (AVI 5605 kb)

Supplementary Movie 5

NCHEMB-A111107315C-SupplementaryMovie5.avi (AVI 7211 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, K., Kasai, R., Hirosawa, K. et al. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 8, 774–783 (2012). https://doi.org/10.1038/nchembio.1028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing