Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry

Abstract

Glycosyltransferases catalyze the reaction between an activated sugar donor and an acceptor to form a new glycosidic linkage. Glycosyltransferases are responsible for the assembly of oligosaccharides in vivo and are also important for the in vitro synthesis of these biomolecules. However, the functional identification and characterization of new glycosyltransferases is difficult and tedious. This paper describes an approach that combines arrays of reactions on an immobilized array of acceptors with an analysis by mass spectrometry to screen putative glycosyltransferases. A total of 14,280 combinations of a glycosyltransferase, an acceptor and a donor in four buffer conditions were screened, leading to the identification and characterization of four new glycosyltransferases. This work is notable because it provides a label-free method for the rapid functional annotation of putative enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screens of putative glycosyltransferases performed on arrays of sugar acceptors.
Figure 2: The screen of putative glycosyltransferases resulted in the discovery of several enzyme activities.

Similar content being viewed by others

References

  1. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    Article  CAS  Google Scholar 

  2. Koeller, K.M. & Wong, C.H. Enzymes for chemical synthesis. Nature 409, 232–240 (2001).

    Article  CAS  Google Scholar 

  3. Blixt, O., van Die, I., Norberg, T. & van den Eijnde, D.H. High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAcβ1→3Gal and GalNAcβ1→3Gal linkages. Glycobiology 9, 1061–1071 (1999).

    Article  CAS  Google Scholar 

  4. Yu, H. et al. A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 127, 17618–17619 (2005).

    Article  CAS  Google Scholar 

  5. Breton, C. et al. Structures and mechanisms of glycosyltransferases. Glycobiology 16, 29R–37R (2006).

    Article  CAS  Google Scholar 

  6. Yi, W. et al. Bacterial homologue of human blood group A transferase. J. Am. Chem. Soc. 130, 14420–14421 (2008).

    Article  CAS  Google Scholar 

  7. Li, M. et al. Characterization of a novel α 1,2-fucosyltransferase of Escherichia coli O128: B12 and functional investigation of its common motif. Biochemistry 47, 378–387 (2008).

    Article  CAS  Google Scholar 

  8. Aharoni, A. et al. High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat. Methods 3, 609–614 (2006).

    Article  CAS  Google Scholar 

  9. Cantarel, B.L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  Google Scholar 

  10. Houseman, B.T. & Mrksich, M. Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9, 443–454 (2002).

    Article  CAS  Google Scholar 

  11. Su, J. & Mrksich, M. Using mass spectrometry to characterize self-assembled monolayers presenting peptides, proteins, and carbohydrates. Angew. Chem. Int. Ed. Engl. 41, 4715–4718 (2002).

    Article  CAS  Google Scholar 

  12. Min, D.H., Su, J. & Mrksich, M. Profiling kinase activities by using a peptide chip and mass spectrometry. Angew. Chem. Int. Edn Engl. 43, 5973–5977 (2004).

    Article  CAS  Google Scholar 

  13. Ban, L. & Mrksich, M. On-chip synthesis and label-free assays of oligosaccharide arrays. Angew. Chem. Int. Edn Engl. 47, 3396–3399 (2008).

    Article  CAS  Google Scholar 

  14. Mrksich, M. Mass spectrometry of self-assembled monolayers: a new tool for molecular surface science. ACS Nano 2, 7–18 (2008).

    Article  CAS  Google Scholar 

  15. Gurard-Levin, Z.A., Scholle, M.D., Eisenberg, A.H. & Mrksich, M. High- throughput screening of small molecule libraries using SAMDI mass spectrometry. ACS Comb. Sci 13, 347–350 (2011).

    Article  CAS  Google Scholar 

  16. Fang, J.W. et al. Highly efficient chemoenzymatic synthesis of α-galactosyl epitopes with a recombinant α(1→3)galactosyltransferase. J. Am. Chem. Soc. 120, 6635–6638 (1998).

    Article  CAS  Google Scholar 

  17. Min, D.H., Yeo, W.S. & Mrksich, M. A method for connecting solution-phase enzyme activity assays with immobilized format analysis by mass spectrometry. Anal. Chem. 76, 3923–3929 (2004).

    Article  CAS  Google Scholar 

  18. Guan, W. et al. Combining carbochips and mass spectrometry to study the donor specificity for the Neisseria meningitidis β 1,3-N-acetylglucosaminyltransferase LgtA. Bioorg. Med. Chem. Lett. 21, 5025–5028 (2011).

    Article  CAS  Google Scholar 

  19. Leskovac, V. Comprehensive Enzyme Kinetics 1st edn (Springer, New York, 2003).

  20. Cleland, W.W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 63, 103–138 (1979).

    Article  CAS  Google Scholar 

  21. Bella, A., Whitehead, J.S. & Kim, Y.S. Human plasma uridine diphosphate galactose-glycoprotein galactosyltransferase: purification, properties and kinetics of the enzyme-catalyzed reaction. Biochem. J. 167, 621–628 (1977).

    Article  CAS  Google Scholar 

  22. Breton, C., Mucha, J. & Jeanneau, C. Structural and functional features of glycosyltransferases. Biochimie 83, 713–718 (2001).

    Article  CAS  Google Scholar 

  23. Rillahan, C.D. & Paulson, J.C. Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 80, 797–783 (2011).

    Article  CAS  Google Scholar 

  24. Park, S. & Shin, I. Carbohydrate microarrays for assaying galactosyltransferase activity. Org. Lett. 9, 1675–1678 (2007).

    Article  CAS  Google Scholar 

  25. Blixt, O. et al. Glycan microarrays for screening sialyltransferase specificities. Glycoconj. J. 25, 59–68 (2008).

    Article  CAS  Google Scholar 

  26. Kosík, O. et al. Polysaccharide microarrays for high-throughput screening of transglycosylase activities in plant extracts. Glycoconj. J. 27, 79–87 (2010).

    Article  Google Scholar 

  27. Laurent, N. et al. Enzymatic glycosylation of peptide arrays on gold surfaces. ChemBioChem 9, 883–887 (2008).

    Article  CAS  Google Scholar 

  28. Chang, S.-H. et al. Glycan array on aluminum oxide–coated glass slides through phosphonate chemistry. J. Am. Chem. Soc. 132, 13371–13380 (2010).

    Article  CAS  Google Scholar 

  29. Sanchez-Ruiz, A., Serna, S., Ruiz, N., Martin-Lomas, M. & Reichardt, N.-C. MALDI-TOF mass spectrometric analysis of enzyme activity and lectin trapping on an array of N-glycans. Angew. Chem. Int. Edn Engl. 50, 1801–1804 (2011).

    Article  CAS  Google Scholar 

  30. Palcic, M.M. & Hindsgaul, O. Flexibility in the donor substrate specificity of β 1,4-galactosyltransferase: application in the synthesis of complex carbohydrates. Glycobiology 1, 205–209 (1991).

    Article  CAS  Google Scholar 

  31. Cerdeño-Tárraga, A.M. et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307, 1463–1465 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

M.M. acknowledges the National Science Foundation (EEC-01180205), US National Institutes of Health (P50 GM086145) and Defense Advanced Research Projects Agency (FA 9550-08-1-0221), and P.G.W. acknowledges the National Basic Research Program of China (973 Program, no. 2012CB822100 and no. 2012CB910300) for financial support. L.L. acknowledges support from the China Scholarship Council (2007102057). We thank J. Modica for assistance with synthesis. We thank Z.-J. Liu (Institute of Biophysics of the Chinese Academy of Sciences) for providing the vector pMCSG7.

Author information

Authors and Affiliations

Authors

Contributions

L.B., A.D.S. and L.C. performed the synthesis of sugar acceptors. N.P., L.L., W.C., W.G. and W.H. constructed the plasmids and expressed the proteins. L.B. and A.D.S. performed the screening reactions. P.G.W. and M.M. provided project management. L.B., A.D.S., P.G.W. and M.M. prepared the manuscript.

Corresponding authors

Correspondence to Peng George Wang or Milan Mrksich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 2397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban, L., Pettit, N., Li, L. et al. Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nat Chem Biol 8, 769–773 (2012). https://doi.org/10.1038/nchembio.1022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing