Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trading molecules and tracking targets in symbiotic interactions

Abstract

It is probable that nearly every natural product structure results from interactions between organisms. Symbiosis, a subset of inter-organism interactions involving closely associated partners, has recently provided new and interesting experimental systems for the study of these interactions. This review discusses new observations about natural product function and structural evolution that emerge from the study of symbiotic systems. In particular, these advances directly address long-standing 'how' and 'why' questions about natural products, providing fundamental insights about the evolution, origin and purpose of natural products that are inaccessible by other methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Roles of metabolism in symbiosis.
Figure 2
Figure 3: Bryostatins and E. sertula are found throughout the tissues of the host animal, B. neritina.
Figure 4: Evolution of natural product pathways.
Figure 5: Potential co-evolution of sponge symbionts and natural products.

Similar content being viewed by others

References

  1. Newman, D.J. & Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).

    CAS  PubMed  Google Scholar 

  2. Simmons, T.L. et al. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc. Natl. Acad. Sci. USA 105, 4587–4594 (2008).

    CAS  PubMed  Google Scholar 

  3. Haygood, M.G., Schmidt, E.W., Davidson, S.K. & Faulkner, D.J. Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J. Mol. Microbiol. Biotechnol. 1, 33–34 (1999).

    CAS  PubMed  Google Scholar 

  4. Smith, D.C. Symbiosis research at the end of the millenium. Hydrobiologia 461, 49–54 (2001).

    Google Scholar 

  5. Margulis, L. The Origin of Eukaryotic Cells (Yale University Press, New Haven, 1971).

    Google Scholar 

  6. Wahl, M. & Mark, O. The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar. Ecol. Prog. Ser. 187, 59–66 (1999).

    Google Scholar 

  7. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86 (2000).

    CAS  PubMed  Google Scholar 

  8. Hotopp, J.C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756 (2007).

    Google Scholar 

  9. Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 21, 519–538 (2004).

    CAS  PubMed  Google Scholar 

  10. Schmidt, E.W. From chemical structure to environmental biosynthetic pathways: navigating marine invertebrate-bacteria associations. Trends Biotechnol. 23, 437–440 (2005).

    CAS  PubMed  Google Scholar 

  11. Visick, K.L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E.G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lopanik, N., Lindquist, N. & Targett, N. Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 139, 131–139 (2004).

    PubMed  Google Scholar 

  13. Kellner, R.L.L. & Dettner, K. Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia 107, 293–300 (1996).

    PubMed  Google Scholar 

  14. Toshima, H. et al. Prevalence of enteric bacteria that inhibit growth of enterohaemorrhagic Escherichia coli O157 in humans. Epidemiol. Infect. 135, 110–117 (2007).

    CAS  PubMed  Google Scholar 

  15. Lewin, R.A. & Cheng, L. Prochloron: A Microbial Enigma (Chapman and Hall, New York, 1989).

    Google Scholar 

  16. Fisher, C.R. & Trench, R.K. In vitro carbon fixation by Prochloron sp. isolated from Diplosoma virens . Biol. Bull. 159, 639–648 (1980).

    Google Scholar 

  17. Kremer, B.P., Pardy, R. & Lewin, R.A. Carbon fixation and photosynthates of Prochloron, a green alga symbiotic with an ascidian, Lissoclinum patella . Phycologia 21, 258–263 (1982).

    CAS  Google Scholar 

  18. Griffiths, D.J. & Thinh, L.V. Transfer of photosynthetically fixed carbon between the prokaryotic green alga Prochloron and its ascidian host. Aust. J. Mar. Freshwater Res. 34, 431–440 (1983).

    CAS  Google Scholar 

  19. Alberte, R.S., Cheng, L. & Lewin, R.A. Characteristics of Prochloron ascidian symbioses. 2. Photosynthesis-irradiance relationships and carbon balance of associations from Palau, Micronesia. Symbiosis 4, 147–170 (1987).

    Google Scholar 

  20. Dionisio-Sege, M.L., Shimada, A., Maruyama, T. & Miyachi, S. Carbonic-anhydrase activity of Prochloron sp. isolated from an ascidian host. Arch. Microbiol. 159, 1–5 (1993).

    Google Scholar 

  21. Koike, I., Yamamuro, M. & Pollard, P.C. Carbon and nitrogen budgets of 2 ascidians and their symbiont, Prochloron, in a tropical seagrass meadow. Aust. J. Mar. Freshwater Res. 44, 173–182 (1993).

    Google Scholar 

  22. Koike, I. & Suzuki, T. Nutritional diversity of symbiotic ascidians in a Fijian seagrass meadow. Ecol. Res. 11, 381–386 (1996).

    CAS  Google Scholar 

  23. Odintsov, V.S. Nitrogen fixation in Prochloron (Prochlorophyta)-ascidian associations — is Prochloron responsible. Endocytobiosis Cell Res. 7, 253–258 (1991).

    Google Scholar 

  24. Ireland, C.M. & Scheuer, P.J. Ulicyclamide and ulithiacyclamide, 2 new small peptides from a marine tunicate. J. Am. Chem. Soc. 102, 5688–5691 (1980).

    CAS  Google Scholar 

  25. Ireland, C.M., Durso, A.R., Newman, R.A. & Hacker, M.P. Anti-neoplastic cyclic peptides from the marine tunicate Lissoclinum patella . J. Org. Chem. 47, 1807–1811 (1982).

    CAS  Google Scholar 

  26. Degnan, B.M. et al. New cyclic peptides with cytotoxic activity from the ascidian Lissoclinum patella . J. Med. Chem. 32, 1349–1354 (1989).

    CAS  PubMed  Google Scholar 

  27. Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella . Proc. Natl. Acad. Sci. USA 102, 7315–7320 (2005).

    CAS  PubMed  Google Scholar 

  28. Donia, M. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2, 729–735 (2006).

    CAS  PubMed  Google Scholar 

  29. Adams, B.J. et al. Biodiversity and systematics of nematode-bacterium entomopathogens. Biol. Control 37, 32–49 (2006).

    Google Scholar 

  30. Brusca, R.C., Brusca, G.J. & Haver, N.J. Invertebrates (Sinauer Associates, Sunderland, Massachusetts, 2003).

    Google Scholar 

  31. Coghlan, A. Nematode genome evolution. WormBook 1–15 (2005).

  32. Goodrich-Blair, H. & Clarke, D.J. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol. Microbiol. 64, 260–268 (2007).

    CAS  PubMed  Google Scholar 

  33. Paul, V.J., Frautschy, S., Fenical, W. & Nealson, K.H. Antibiotics in microbial ecology. J. Chem. Ecol. 7, 589–597 (1981).

    CAS  PubMed  Google Scholar 

  34. Richardson, W.H., Schmidt, T.M. & Nealson, K.H. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens . Appl. Environ. Microbiol. 54, 1602–1605 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Joyce, S.A. et al. Bacterial biosynthesis of a multipotent stilbene. Angew. Chem. Int. Ed. 47, 1942–1945 (2008).

    CAS  Google Scholar 

  36. Pettit, G.R. et al. Isolation and structure of bryostatin 1. J. Am. Chem. Soc. 104, 6846–6848 (1982).

    CAS  Google Scholar 

  37. Kortmansky, J. & Schwartz, G.K. Bryostatin-1: a novel PKC inhibitor in clinical development. Cancer Invest. 21, 924–936 (2003).

    CAS  PubMed  Google Scholar 

  38. Woollacott, R.M. Association of bacteria with bryozoan larvae. Mar. Biol. 65, 155–158 (1981).

    Google Scholar 

  39. Haygood, M.G. & Davidson, S.K. Small-subunit rRNA genes and in situ hybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryozoan Bugula neritina and proposal of “Candidatus endobugula sertula”. Appl. Environ. Microbiol. 63, 4612–4616 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kerr, R.G., Lawry, J. & Gush, K.A. In vitro biosynthetic studies of the bryostatins, anti-cancer agents from the marine bryozoan Bugula neritina . Tetrahedr. Lett. 37, 8305–8308 (1996).

    CAS  Google Scholar 

  41. Davidson, S.K., Allen, S.W., Lim, G.E., Anderson, C.M. & Haygood, M.G. Evidence for the biosynthesis of bryostatins by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina . Appl. Environ. Microbiol. 67, 4531–4537 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hildebrand, M. et al. bryA: an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina . Chem. Biol. 11, 1543–1552 (2004).

    CAS  PubMed  Google Scholar 

  43. Sudek, S. et al. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina . J. Nat. Prod. 70, 67–74 (2007).

    CAS  PubMed  Google Scholar 

  44. Lim-Fong, G.E., Regali, L.A. & Haygood, M.G. Evolutionary relationships of “Candidatus endobugula” bacterial symbionts and their Bugula bryozoan hosts. Appl. Environ. Microbiol. 74, 3605–3609 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharp, K.H., Davidson, S.K. & Haygood, M.G. Localization of 'Candidatus Endobugula sertula' and the bryostatins throughout the life cycle of the bryozoan Bugula neritina . ISME J. 1, 693–702 (2007).

    PubMed  Google Scholar 

  46. Pavan, M. & Bo, G. Pederin, toxic principle obtained in the crystalline state from the beetle Paederus fuscipes . Curt. Phys. Comp. Oecol. 3, 307–312 (1953).

    CAS  Google Scholar 

  47. Kellner, R.L.L. Horizontal transmission of biosynthetic capabilities for pederin in Paederus melanurus (Coleoptera: Staphylinidae). Chemoecology 11, 127–130 (2001).

    CAS  Google Scholar 

  48. Piel, J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA 99, 14002–14007 (2002).

    CAS  PubMed  Google Scholar 

  49. Chapela, I.H., Rehner, S.A., Schultz, T.R. & Mueller, U.G. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266, 1691–1694 (1994).

    CAS  PubMed  Google Scholar 

  50. Mueller, U.G., Rehner, S.A. & Schultz, T.R. The evolution of agriculture in ants. Science 281, 2034–2038 (1998).

    CAS  PubMed  Google Scholar 

  51. Schlick-Steiner, B.C. et al. Specificity and transmission mosaic of ant nest-wall fungi. Proc. Natl. Acad. Sci. USA 105, 940–943 (2008).

    CAS  PubMed  Google Scholar 

  52. Poulsen, M. & Boomsma, J.J. Mutualistic fungi control crop diversity in fungus-growing ants. Science 307, 741–744 (2005).

    CAS  PubMed  Google Scholar 

  53. Currie, C.R., Poulsen, M., Mendenhall, J., Boomsma, J.J. & Billen, J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311, 81–83 (2006).

    CAS  PubMed  Google Scholar 

  54. Gerardo, N.M., Jacobs, S.R., Currie, C.R. & Mueller, U.G. Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. PLoS Biol. 4, 1358–1363 (2006).

    CAS  Google Scholar 

  55. Currie, C.R., Scott, J.A., Summerbell, R.C. & Malloch, D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398, 701–704 (1999); corrigendum 423, 461 (2003).

    CAS  Google Scholar 

  56. Currie, C.R., Mueller, U.G. & Malloch, D. The agricultural pathology of ant fungus gardens. Proc. Natl. Acad. Sci. USA 96, 7998–8002 (1999).

    CAS  PubMed  Google Scholar 

  57. Riley, M.A. & Chavan, M.A. Bacteriocins: Ecology and Evolution (Springer, New York, 2007).

    Google Scholar 

  58. Roush, R.F., Nolan, E.M., Lohr, F. & Walsh, C.T. Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N-P bond formation microcin C7. J. Am. Chem. Soc. 130, 3063–3069 (2008).

    Google Scholar 

  59. Zamble, D.B., McClure, C.P., Penner-Hahn, J.E. & Walsh, C.T. The McbB component of microcin B17 synthetase is a zinc metalloprotein. Biochemistry 39, 16190–16199 (2000).

    CAS  PubMed  Google Scholar 

  60. Li, Y.M., Milne, J.C., Madison, L.L., Kolter, R. & Walsh, C.T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274, 1188–1193 (1996).

    CAS  PubMed  Google Scholar 

  61. Adams, J., Kinney, T., Thompson, S., Rubin, L. & Helling, R.B. Frequency-dependent selection for plasmid-containing cells of Escherichia coli . Genetics 91, 627–637 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chao, L. & Levin, B.R. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc. Natl. Acad. Sci. USA 78, 6324–6328 (1981).

    CAS  PubMed  Google Scholar 

  63. Riley, M.A. & Wertz, J.E. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137 (2002).

    CAS  PubMed  Google Scholar 

  64. Tagg, J.R., Dajani, A.S. & Wannamaker, L.W. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40, 722–756 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Riley, M.A., Goldstone, C.M., Wertz, J.E. & Gordon, D. A phylogenetic approach to assessing the targets of microbial warfare. J. Evol. Biol. 16, 690–697 (2003).

    CAS  PubMed  Google Scholar 

  66. Gordon, D.M., Oliver, E. & Littlefield-Wyer, J. in Bacteriocins: Ecology and Evolution (eds. Riley, M.A. & Chavan, M.A.) 5–18 (Springer, New York, 2007).

    Google Scholar 

  67. Devireddy, L.R., Gazin, C., Zhu, X. & Green, M.R.A. Cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123, 1293–1305 (2005).

    CAS  PubMed  Google Scholar 

  68. Nguyen, T. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008).

    CAS  PubMed  Google Scholar 

  69. Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei . Proc. Natl. Acad. Sci. USA 101, 16222–16227 (2004).

    CAS  PubMed  Google Scholar 

  70. Kawaide, H. Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70, 583–590 (2006).

    CAS  PubMed  Google Scholar 

  71. Eyberger, A.L., Dondapati, R. & Porter, J.R. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod. 69, 1121–1124 (2006).

    CAS  PubMed  Google Scholar 

  72. Puri, S.C., Verma, V., Amna, T., Qazi, G.N. & Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod. 68, 1717–1719 (2005).

    CAS  PubMed  Google Scholar 

  73. Jennewein, S., Wildung, M.R., Chau, M., Walker, K. & Croteau, R. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc. Natl. Acad. Sci. USA 101, 9149–9154 (2004).

    CAS  PubMed  Google Scholar 

  74. Williams, D.C. et al. Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. Chem. Biol. 7, 969–977 (2000).

    CAS  PubMed  Google Scholar 

  75. Zhou, X. et al. Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei . Prikl. Biokhim. Mikrobiol. 43, 490–494 (2007).

    CAS  PubMed  Google Scholar 

  76. Wang, J. et al. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei . FEMS Microbiol. Lett. 193, 249–253 (2000).

    CAS  PubMed  Google Scholar 

  77. Li, J.Y., Strobel, G., Sidhu, R., Hess, W.M. & Ford, E.J. Endophytic taxol-producing fungi from bald cypress, Taxodium distichum . Microbiology 142, 2223–2226 (1996).

    CAS  PubMed  Google Scholar 

  78. Strobel, G. et al. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana . Microbiology 142, 435–440 (1996).

    CAS  PubMed  Google Scholar 

  79. Stierle, A., Strobel, G. & Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260, 214–216 (1993).

    CAS  PubMed  Google Scholar 

  80. Fujii, I. in Comprehensive Natural Products Chemistry (eds. Barton, D.N.K. & Meth-Cohn, O.) 409–441 (Elsevier, New York, 1999).

    Google Scholar 

  81. Poeaknapo, C., Schmidt, J., Brandsch, M., Drager, B. & Zenk, M.H. Endogenous formation of morphine in human cells. Proc. Natl. Acad. Sci. USA 101, 14091–14096 (2004).

    CAS  PubMed  Google Scholar 

  82. Donia, M.S., Ravel, J. & Schmidt, E.W. A global assembly line for cyanobactins. Nat. Chem. Biol. 4, 341–343 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schmidt, E.W., Obraztsova, A.Y., Davidson, S.K., Faulkner, D.J. & Haygood, M.G. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, “Candidatus Entotheonella palauensis . Mar. Biol. 136, 969–977 (2000).

    CAS  Google Scholar 

  84. Schmidt, E.W., Bewley, C.A. & Faulkner, D.J. Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid sponge Theonella swinhoei from Palau and Mozambique. J. Org. Chem. 63, 1254–1258 (1998).

    CAS  Google Scholar 

  85. Taylor, M.W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bruck, W.M., Sennett, S.H., Pomponi, S.A., Willenz, P. & McCarthy, P.J. Identification of the bacterial symbiont Entotheonella sp. in the mesohyl of the marine sponge Discodermia sp. ISME J. 2, 335–339 (2008).

    CAS  PubMed  Google Scholar 

  87. Schirmer, A. et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta . Appl. Environ. Microbiol. 71, 4840–4849 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Carroll, A.R. et al. Patellins 1–6 and trunkamide A: novel cyclic hexa-, hepta- and octa-peptides from colonial ascidians, Lissoclinum sp. Aust. J. Chem. 49, 659–667 (1996).

    CAS  Google Scholar 

  89. Salomon, C.E. & Faulkner, D.J. Localization studies of bioactive cyclic peptides in the ascidian Lissoclinum patella . J. Nat. Prod. 65, 689–692 (2002).

    CAS  PubMed  Google Scholar 

  90. Long, P.F., Dunlap, W.C., Battershill, C.N. & Jaspars, M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieve sustained metabolite production. ChemBioChem 6, 1760–1765 (2005).

    CAS  PubMed  Google Scholar 

  91. Jones, B.V. & Marchesi, J.R. Transposon-aided capture (TRACA) of plasmids resident in the human gut mobile metagenome. Nat. Methods 4, 55–61 (2007).

    CAS  PubMed  Google Scholar 

  92. Jones, B.V. & Marchesi, J.R. Accessing the mobile metagenome of the human gut microbiota. Mol. Biosyst. 3, 749–758 (2007).

    CAS  PubMed  Google Scholar 

  93. Casas, V. et al. Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol. Lett. 261, 141–149 (2006).

    CAS  PubMed  Google Scholar 

  94. Dinsdale, E.A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).

    CAS  PubMed  Google Scholar 

  95. Andrianasolo, E.H. et al. Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org. Lett. 7, 1375–1378 (2005).

    CAS  PubMed  Google Scholar 

  96. Bewley, C.A., Holland, N.D. & Faulkner, D.J. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52, 716–722 (1996).

    CAS  PubMed  Google Scholar 

  97. Chavan, M., Rafi, H., Wertz, J., Goldstone, C. & Riley, M.A. Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification in Klebsiella . J. Mol. Evol. 60, 546–556 (2005).

    CAS  PubMed  Google Scholar 

  98. Wertz, J.E. & Riley, M.A. Chimeric nature of two plasmids of Hafnia alvei encoding the bacteriocins alveicins A and B. J. Bacteriol. 186, 1598–1605 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work on symbiosis is funded by the US National Institutes of Health (GM071425) and by the US National Science Foundation (EF-0412226) (subcontract from University of Maryland). The author thanks M.G. Haygood (Oregon Health and Science University) for critically reading an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, E. Trading molecules and tracking targets in symbiotic interactions. Nat Chem Biol 4, 466–473 (2008). https://doi.org/10.1038/nchembio.101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing