Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Metallo-β-lactamases withstand low Zn(II) conditions by tuning metal-ligand interactions

Abstract

A number of multiresistant bacterial pathogens inactivate antibiotics by producing Zn(II)-dependent β-lactamases. We show that metal uptake leading to an active dinuclear enzyme in the periplasmic space of Gram-negative bacteria is ensured by a cysteine residue, an unusual metal ligand in oxidizing environments. Kinetic, structural and affinity data show that such Zn(II)-cysteine interaction is an adaptive trait that tunes the metal binding affinity, thus enabling antibiotic resistance at restrictive Zn(II) concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The capacity to confer resistance of BcIIC221D enzyme to E. coli cells is impaired under low Zn(II) conditions.
Figure 2: Structures of the mono- and di-Zn(II) binding sites of BcIIC221D enzyme.
Figure 3: The mono-Co(II) BcIIC221D is inactive and unable to bind the imipenem substrate.

Similar content being viewed by others

References

  1. Crowder, M.W., Spencer, J. & Vila, A.J. Acc. Chem. Res. 39, 721–728 (2006).

    Article  CAS  Google Scholar 

  2. Fisher, J.F., Meroueh, S.O. & Mobashery, S. Chem. Rev. 105, 395–424 (2005).

    Article  CAS  Google Scholar 

  3. Fabiane, S.M. et al. Biochemistry 37, 12404–12411 (1998).

    Article  CAS  Google Scholar 

  4. Orellano, E.G., Girardini, J.E., Cricco, J.A., Ceccarelli, E.A. & Vila, A.J. Biochemistry 37, 10173–10180 (1998).

    Article  CAS  Google Scholar 

  5. Hu, Z., Peryannan, G., Bennett, B. & Crowder, M. J. Am. Chem. Soc. 130, 14207–14216 (2008).

    Article  CAS  Google Scholar 

  6. Hawk, M.J. et al. J. Am. Chem. Soc. 131, 10753–10762 (2009).

    Article  CAS  Google Scholar 

  7. Llarrull, L.I., Tioni, M.F. & Vila, A.J. J. Am. Chem. Soc. 130, 15842–15851 (2008).

    Article  CAS  Google Scholar 

  8. Wommer, S. et al. J. Biol. Chem. 277, 24142–24147 (2002).

    Article  CAS  Google Scholar 

  9. Tioni, M.F. et al. J. Am. Chem. Soc. 130, 15852–15863 (2008).

    Article  CAS  Google Scholar 

  10. Badarau, A. & Page, M.I. Biochemistry 45, 11012–11020 (2006).

    Article  CAS  Google Scholar 

  11. Carfi, A. et al. EMBO J. 14, 4914–4921 (1995).

    Article  CAS  Google Scholar 

  12. Murphy, T.A. et al. J. Mol. Biol. 357, 890–903 (2006).

    Article  CAS  Google Scholar 

  13. González, J.M., Buschiazzo, A. & Vila, A.J. Biochemistry 49, 7930–7938 (2010).

    Article  Google Scholar 

  14. Davis, A.V. & O'Halloran, T.V. Nat. Chem. Biol. 4, 148–151 (2008).

    Article  CAS  Google Scholar 

  15. Daiyasu, H., Osaka, K., Ishino, Y. & Toh, H. FEBS Lett. 503, 1–6 (2001).

    Article  CAS  Google Scholar 

  16. Haruta, S. et al. Antimicrob. Agents Chemother. 44, 2304–2309 (2000).

    Article  CAS  Google Scholar 

  17. Llarrull, L.I., Tioni, M.F., Kowalski, J., Bennett, B. & Vila, A.J. J. Biol. Chem. 282, 30586–30595 (2007).

    Article  CAS  Google Scholar 

  18. Rasia, R.M. & Vila, A.J. J. Biol. Chem. 279, 26046–26051 (2004).

    Article  CAS  Google Scholar 

  19. Simona, F. et al. J. Biol. Chem. 284, 28164–28171 (2009).

    Article  CAS  Google Scholar 

  20. Jacquin, O. et al. J. Mol. Biol. 392, 1278–1291 (2009).

    Article  CAS  Google Scholar 

  21. Outten, C.E. & O'Halloran, T.V. Science 292, 2488–2492 (2001).

    Article  CAS  Google Scholar 

  22. Ma, Z., Jacobsen, F.E. & Giedroc, D.P. Chem. Rev. 109, 4644–4681 (2009).

    Article  CAS  Google Scholar 

  23. Morán-Barrio, J., Limansky, A.S. & Viale, A.M. Antimicrob. Agents Chemother. 53, 2908–2917 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by CONICET and by grants from the Howard Hughes Medical Institute, Agencia Nacional de Promoción Científica y Tecnológica, US National Institutes of Health (1R01AI100560 to A.J.V.) and Laboratório Nacional de Luz Síncrotron, Campinas, Brazil. A.J.V. is a fellow of the John Simon Guggenheim Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.M.G., J.A.C., M.-R.M., P.E.T. and A.J.V. designed experiments and analyzed results. J.M.G., M.-R.M., P.E.T. and A.J.V. wrote the manuscript. J.M.G., J.A.C. and M.-R.M. expressed and purified proteins. J.M.G. and J.A.C. determined kinetic parameters and performed cobalt substitution. J.M.G. performed stopped-flow measurements. M.-R.M. determined the dissociation constants for Zn(II) by competition experiments and the activity dependence on Zn(II) concentration. J.M.G. and F.J.M.M. determined the crystal structures. J.A.C. designed and made plasmid constructs, determined minimum inhibitory concentrations and performed in vivo antibiotic sensitivity tests. J.A.C. and M.-R.M. performed periplasmic extracts and western blot assays.

Corresponding authors

Correspondence to Julia A Cricco or Alejandro J Vila.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 945 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, J., Meini, MR., Tomatis, P. et al. Metallo-β-lactamases withstand low Zn(II) conditions by tuning metal-ligand interactions. Nat Chem Biol 8, 698–700 (2012). https://doi.org/10.1038/nchembio.1005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing