Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments


Graphene, a two-dimensional layer of sp2-hybridized carbon atoms, can be viewed as a sheet of benzene rings fused together. Three benzene rings can be combined in three different ways, to yield linear anthracene and angular phenanthrene, where the rings share two C–C bonds, and the phenalenyl structure where three C–C bonds are shared between the rings. This third structure contains an uneven number of carbon atoms and, hence, in its neutral state, an uneven number of electrons — that is, it is a radical. All three structures may be viewed as being sections of graphene. Extension of this concept leads to an entire family of phenalenyl derivatives — 'open-shell graphene fragments' — that are of substantial interest from the standpoint of fundamental science as well as in view of their potential applications in materials chemistry, in particular quantum electronic devices. Here we discuss current trends and challenges in this field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spin density distributions of phenalenyl-based neutral radicals.
Figure 2: Crystal structure and electronic structure of the π-dimer of 3.
Figure 3: Structural change of intra-π-dimer interaction.
Figure 4: ESR spectra, pictures of a rechargeable battery made using a crystalline neutral radical, high-spin magnetic triangulenes, π-extended phenalenyl derivatives, a π-stacked radical polymer, and curved and twisted phenalenyl systems.


  1. 1

    Itoh, K. & Kinoshita, M. (eds) Molecular Magnetism 1–347 (Kodansha/Gordon and Breach, 2000).

    Google Scholar 

  2. 2

    Miller, J. S. & Drillon, M. (eds) Magnetism: Molecules to Materials II 1–489 (Wiley-VCH, 2001).

    Book  Google Scholar 

  3. 3

    Hicks, R. G. What's new in stable radical chemistry? Org. Biomol. Chem. 5, 1321–1338 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Feringa, B. L. (ed.) Molecular Switches (Wiley-VCH, 2001).

    Book  Google Scholar 

  5. 5

    Balzami, V., Credi, A. & Venturi, M. Molecular Devices and Machines 2nd edn (Willey-VCH, 2008).

    Book  Google Scholar 

  6. 6

    Coronado, E. & Epstein, A. J. Molecular spintronics and quantum computing. J. Mater. Chem. 19, 1670–1671 (2009).

    Article  Google Scholar 

  7. 7

    Sato, K. et al. in Molecular Realizations of Quantum Computing 2007 (eds Nakahara, M. et al.) 58–162 (World Scientific, 2009).

    Book  Google Scholar 

  8. 8

    Rahimi, R. et al. Pulsed ENDOR-based quantum information processing. Int. J. Quantum Info. 3, 197–204 (2005).

    Article  Google Scholar 

  9. 9

    Morita, Y. & Nishida, S. in Stable Radicals: Fundamental and Applied Aspects of Odd-Electron Compounds (ed. Hicks, R) Ch. 3, (Wiley, 2010).

    Google Scholar 

  10. 10

    Sugisaki, K. et al. Spin-orbit contributions in high-spin nitrenes/carbenes: a hybrid CASSCF/MRMP2 study of zero-field splitting tensors. ChemPhysChem 11, 3146–3151 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Haddon, R. C. Design of organic metals and superconductors. Nature 256, 394–396 (1975).

    CAS  Article  Google Scholar 

  12. 12

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  14. 14

    Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Clar, E. Polycyclic Hydrocarbon Vol. 1, 24–31 (Academic, 1964).

    Book  Google Scholar 

  16. 16

    Inoue, J. et al. The first detection of a Clar's hydrocarbon, 2,6,8-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé benzenoid hydrocarbon. J. Am. Chem. Soc. 123, 12702–12703 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Fukui, K. et al. The first non-Kekulé polynuclear aromatic high-spin hydrocarbon: generation of a triangulene derivative and band structure calculation of triangulene-based high-spin hydrocarbons. Synth. Metals 121, 1824–1825 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Philpott, M. R., Cimpoesu, F. & Kawazoe, Y. Geometry, bonding and magnetism in planar triangulene graphene molecules with D3h symmetry: zigzag C mml_m * * 2 + 4 mml_m + 1 H3 m +3 (m = 2, ..., 15). Chem. Phys. 354, 1–15 (2008).

    Google Scholar 

  19. 19

    Goto, K. et al. A stable neutral hydrocarbon radical: synthesis, crystal structure and physical properties of 2,5,8-tri-tert-butyl-phenalenyl. J. Am. Chem. Soc. 121, 1619–1620 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Morita, Y. et al. A new trend in phenalenyl chemistry: a persistent neutral radical, 2,5,8-tri-tert-butyl-1,3-diazaphenalenyl, and the excited triplet state of the gable syn-dimer in the crystal column motif. Angew. Chem. Int. Ed. 42, 1793–1796 (2002).

    Article  Google Scholar 

  21. 21

    Haddon, R. C. et al. 1,9-dithiophenalenyl system. J. Am. Chem. Soc. 100, 7629–7633 (1978).

    CAS  Article  Google Scholar 

  22. 22

    Beer, L. et al. The first electronically stabilized phenalenyl radical: effect of substituents on solution chemistry and solid-state structure. Cryst. Growth Des. 7, 802–809 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Beer, L. et al. Tetrathiophenalenyl radical and its disulfide-bridged dimer. Org. Lett. 10, 3121–3123 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Morita, Y. et al. New persistent radicals: synthesis and electronic spin structure of 2,5-di-tert-butyl-6-oxophenalenoxyl derivatives. J. Am. Chem. Soc. 122, 4825–4826 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Morita, Y. et al. Topological symmetry control in spin density distribution: spin chemistry of phenalenyl based neutral monoradical systems. Org. Lett. 5, 3289–3291 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Kaupp, M., Bühl, M. & Malkin, V. G. (eds) Calculation of NMR and EPR Parameters: Theory and Applications (Wiley-VCH, 2004).

    Book  Google Scholar 

  27. 27

    Small, D. et al. Intermolecular π-to-π bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. J. Am. Chem. Soc. 126, 13850–13858 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Suzuki, S. et al. Aromaticity on the pancake-bonded dimer of neutral phenalenyl radical as studied by MS and NMR spectroscopies and NICS analysis. J. Am. Chem. Soc. 128, 2530–2531 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Mota, F., Miller, J. S. & Novoa, J. J. Comparative analysis of the multicenter, long bond in [TCNE]•– and phenalenyl radical dimers: a unified description of multicenter long bonds. J. Am. Chem. Soc. 131, 7699–7707 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Chi, X. et al. Dimeric phenalenyl-based neutral radical molecular conductors. J. Am. Chem. Soc. 123, 4041–4048 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Itkis, M. E., Chi, X., Cordes, A. W. & Haddon, R. C. Magneto-opto-electronic bistability in a phenalenyl-based neutral radical. Science 296, 1443–1445 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Pal, S. K. et al. Resonating valence-bond ground state in a phenalenyl-based neutral radical conductor. Science 309, 281–284 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Shimizu, A. et al. Resonance balance shift in stacks of delocalized singlet biradicals. Angew. Chem. Int. Ed. 48, 5482–5486 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Morita, Y. et al. Thermochromism in an organic crystal based on the coexistence of σ- and π-dimers. Nature Mater. 7, 48–51 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Nishida, S. et al. Spin transfer and solvato-/thermochromism induced by intramolecular electron transfer in a purely organic open-shell system. Angew. Chem. Int. Ed. 44, 7277–7280 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Morita, Y. et al. Redox-based spin diversity in a 6-oxophenalenoxyl system: generation, ESR/ENDOR/TRIPLE, and theoretical studies of 2,5,8-tri-tert-butylphenalenyl-1,6-bis(olate) salts. Org. Lett. 4, 1985–1988 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Morita, Y., Nishida, S., Kawai, J., Takui, T. & Nakasuji, K. Oxophenalenoxyl: novel stable neutral radicals with a unique spin-delocalized nature depending on topological symmetries and redox state. Pure Appl. Chem. 47, 507–517 (2008).

    Article  Google Scholar 

  38. 38

    Morita, Y., Okafuji, T. & Satoh, M. Molecular crystalline rechargeable battery. Japanese patent JP2007227186 A 20070906 (2007).

  39. 39

    Enoki, T., Kobayashi, Y. & Fukui, K. Electronic structures of graphene and nanographene. Int. Rev. Phys. Chem. 26, 609–645 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Shohoji, M. C. B. L. et al. Electronic quartet and triplet states of polyanionic C60 fullerene and their anomalous spin relaxation as studied by cw-ESR/2D-electron spin transient nutation spectroscopy. J. Am. Chem. Soc. 122, 2962–2963 (2000).

    CAS  Article  Google Scholar 

  41. 41

    Rath, H. et al. A stable organic radical delocalized on a highly twisted π system formed upon palladium metalation of a Möbius aromatic hexaphyrin. Angew. Chem. Int. Ed. 49, 1489–1491 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Morita, Y. et al. Curved aromaticity of a corannulene-based neutral radical: crystal structure and 3D unbalanced-delocalization of spin. Angew. Chem. Int. Ed. 47, 2035–2038 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Ueda, A. et al. Three-dimensional intramolecular exchange interaction in a curved and nonalternant π-conjugated system: corannulene with two phenoxyl radicals. Angew. Chem. Int. Ed. 49, 1678–1682 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Zak, J. K., Miyasaka, M., Rajca, S., Lapkowski, M. & Rajca, A. Radical cation of helical, cross-conjugated β-oligothiophene. J. Am. Chem. Soc. 132, 3246–3247 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Nishida, S. et al. Curve-structured phenalenyl chemistry: synthesis, electronic structure, and bowl-inversion barrier of a phenalenyl-fused corannulene anion. J. Am. Chem. Soc. 130, 14954–14955 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Sato, K. et al. Implementation of molecular spin quantum computing by pulsed ENDOR technique: direct observation of quantum entanglement and spinor. Physica E 40, 363–366 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Sato, K. et al. Molecular electron-spin quantum computers and quantum information processing: pulse-based electron magnetic resonance spin technology applied to matter spin-qubits. J. Mater. Chem. 19, 3739–3754 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Morita, Y. et al. Triple-stranded metallo-helicates addressable as Lloyd's electron spin qubits. J. Am. Chem. Soc. 132, 6944–6946 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nature Chem. 2, 106–111 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Webb, G. A. (ed.) Modern Magnetic Resonance 643–650 (Springer, 2007).

    Google Scholar 

Download references


We thank Kazuhiro Nakasuji (Fukui University of Technology and Osaka University) for his valuable suggestions and discussions throughout this work. This work was partly supported by Grants-in-Aids for Scientific Research on Innovation Areas (no. 20110006), Elements Science and Technology Project, and Scientific Research on Innovative Areas, 'Quantum Cybernetics', from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Support for the present work by the Japan Science and Technology Agency through the Core Research for Evolutional Science and Technology project 'Implementation of Molecular Spin Quantum Computers' in 'Creation of New Technology Aiming for the Realization of Quantum Information Processing Systems' and the FIRST project 'Quantum Information Processing' Funding Program for World-Leading Innovative R&D on Science and Technology, JSPS, Japan, are also acknowledged.

Author information



Corresponding authors

Correspondence to Yasushi Morita or Takeji Takui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1538 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morita, Y., Suzuki, S., Sato, K. et al. Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nature Chem 3, 197–204 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing