Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA charge transport over 34 nm

Abstract

Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Illustration of the DNAs used on the electrodes.
Figure 2: Electrochemistry of 100-mer well-matched and mismatched monolayers.
Figure 3: Kinetics of CT through 100-mer and 17-mer monolayers.
Figure 4: Electrochemistry and enzymatic activity on various DNA films.
Figure 5

References

  1. Robertson, N. & McGowan, C. A. A comparison of potential molecular wires as components for molecular electronics. Chem. Soc. Rev. 32, 96–103 (2003).

    CAS  Article  Google Scholar 

  2. Chen, F. & Tao, N. J. Electron transport in single molecules: from benzene to graphene. Acc. Chem. Res. 42, 429–438 (2009).

    CAS  Article  Google Scholar 

  3. Malliaras, G. & Friend, R. An organic electronics primer. Phys. Today 58, 53–58 (2005).

    CAS  Article  Google Scholar 

  4. Tuccitto, N. et al. Highly conductive ~40-nm-long molecular wires assembled by stepwise incorporation of metal centres. Nature Mater. 8, 41–46 (2009).

    CAS  Article  Google Scholar 

  5. Choi, S. H., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    CAS  Article  Google Scholar 

  6. Liu, L. & Frisbie, C. D. Length-dependent conductance of conjugated molecular wires synthesized by stepwise ‘click’ chemistry. J. Am. Chem. Soc. 132, 8854–8855 (2010).

    Article  Google Scholar 

  7. Søndergaard, R. et al. Conjugated 12 nm long oligomers as molecular wires in nanoelectronics. J. Mater. Chem. 19, 3899–3908 (2009).

    Article  Google Scholar 

  8. Hu, W. et al. Electron transport in self-assembled polymer molecular junctions. Phys. Rev. Lett. 96, 027801 (2006).

    Article  Google Scholar 

  9. Vura-Weis, J. et al. Crossover from single-step tunneling to multistep hopping for molecular triplet energy transfer. Science 328, 1547–1550 (2010).

    CAS  Article  Google Scholar 

  10. Drummond, T. G., Hill, M. G. & Barton, J. K. Electrochemical DNA sensors. Nature Biotechnol. 21, 1192–1199 (2003).

    CAS  Article  Google Scholar 

  11. Liu, J., Cao, Z. & Lu, Y. Functional nucleic acid sensors. Chem. Rev. 109, 1948–1998 (2009).

    CAS  Article  Google Scholar 

  12. Endres, R. G., Cox, D. L. & Singh, R. R. P. Colloquium: the quest for high-conductance DNA. Rev. Mod. Phys. 76, 195–214 (2004).

    CAS  Article  Google Scholar 

  13. Roy, S. et al. Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes. Nano Lett. 8, 26–30 (2008).

    CAS  Article  Google Scholar 

  14. Murphy, C. J. et al. Long-range photoinduced electron transfer through a DNA helix. Science 262, 1025–1029 (1993).

    CAS  Article  Google Scholar 

  15. Fink, H. W. & Schoenberger, C. Electrical conduction through DNA molecules. Nature 398, 407–410 (1999).

    CAS  Article  Google Scholar 

  16. de Pablo, P. J. et al. Absence of dc-conductivity in λ-DNA. Phys. Rev. Lett. 85, 4992–4995 (2000).

    CAS  Article  Google Scholar 

  17. Kasumov, A. et al. Proximity-induced superconductivity in DNA. Science 291, 280–282 (2001).

    CAS  Article  Google Scholar 

  18. Storm, A. J., van Noort, J., de Vries, S. & Dekker, C. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl. Phys. Lett. 79, 3881–3883 (2001).

    CAS  Article  Google Scholar 

  19. Guo, X., Gorodetsky, A. A., Hone, J., Barton, J. K. & Nuckolls, C. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nature Nanotech. 3, 163–167 (2008).

    CAS  Article  Google Scholar 

  20. Kelley, S. O. & Barton, J. K. Electron transfer between bases in double helical DNA. Science 283, 375–381 (1999).

    CAS  Article  Google Scholar 

  21. Cohen, H., Nogues, C., Naaman, R. & Porath, D. Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc. Natl Acad. Sci. USA 102, 11589–11593 (2005).

    CAS  Article  Google Scholar 

  22. Xu, B., Zhang, P., Li, X. & Tao, N. Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett. 4, 1105–1108 (2004).

    CAS  Article  Google Scholar 

  23. Kelley, S. O., Holmlin, R. E., Stemp, E. D. A. & Barton, J. K. Photoinduced electron transfer in ethidium-modified DNA duplexes: dependence on distance and base stacking. J. Am. Chem. Soc. 119, 9861–9870 (1997).

    CAS  Article  Google Scholar 

  24. Kelley, S. O., Boon, E. M., Barton, J. K., Jackson, N. M. & Hill, M. G. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 27, 4830–4837 (1999).

    CAS  Article  Google Scholar 

  25. Boon, E. M., Ceres, D. M., Drummond, T. G., Hill, M. G. & Barton, J. K. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature Biotechnol. 18, 1096–1100 (2000).

    CAS  Article  Google Scholar 

  26. Núñez, M. E., Hall, D. B. & Barton, J. K. Long-range oxidative damage to DNA: effects of distance and sequence. Chem. Biol. 6, 85–97 (1999).

    Article  Google Scholar 

  27. Boon, E. M., Salas, J. E. & Barton, J. K. An electrical probe of protein–DNA interactions on DNA-modified surfaces. Nature Biotechnol. 20, 282–286 (2002).

    CAS  Article  Google Scholar 

  28. Genereux, J. C. & Barton, J. K. Mechanisms for DNA charge transport. Chem. Rev. 110, 1642–1662 (2010).

    CAS  Article  Google Scholar 

  29. Wagenknecht, H.-A. Charge Transfer in DNA: From Mechanism to Application (Wiley, 2005).

    Book  Google Scholar 

  30. Kawai, K., Kodera, H., Osakada, Y & Majima, T. Sequence-independent and rapid long-range charge transfer through DNA. Nature Chem. 1, 156–159 (2009).

    CAS  Article  Google Scholar 

  31. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  Article  Google Scholar 

  32. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  Google Scholar 

  33. Soleymani, L. et al. Programming the detection limits of biosensors through controlled nanostructuring. Nature Nanotech. 4, 844–848 (2010).

    Article  Google Scholar 

  34. Slinker, J. D., Muren, N. B., Gorodetsky, A. A. & Barton, J. K. Multiplexed DNA-modified electrodes. J. Am. Chem. Soc. 132, 2769–2774 (2010).

    CAS  Article  Google Scholar 

  35. Gorodetsky, A. A., Ebrahim, A. & Barton, J. K. Electrical detection of TATA binding protein at DNA-modified microelectrodes. J. Am. Chem. Soc. 130, 2924–2925 (2008).

    CAS  Article  Google Scholar 

  36. Liu, T. & Barton, J. K. DNA electrochemistry through the base pairs not the sugar-phosphate backbone. J. Am. Chem. Soc. 127, 10160–10161 (2005).

    CAS  Article  Google Scholar 

  37. Kelley, S. O. et al. Orienting DNA helices on gold using applied electric fields. Langmuir 14, 6781–6784 (1998).

    CAS  Article  Google Scholar 

  38. Sam, M., Boon, E. M., Barton, J. K., Hill, M. G. & Spain, E. M. Morphology of 15-mer duplexes tethered to Au(111) probed using scanning probe microscopy. Langmuir 17, 5727–5730 (2001).

    CAS  Article  Google Scholar 

  39. Boal, A. K. & Barton, J. K. Electrochemical detection of lesions in DNA. Bioconjugate Chem. 16, 312–321 (2005).

    CAS  Article  Google Scholar 

  40. Laviron, E. General expression of the linear potential sweep voltammagram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979).

    CAS  Article  Google Scholar 

  41. Weber, K., Hockett, L. & Creager, S. Long-range electronic coupling between ferrocene and gold in alkanethiolate-based monolayers on electrodes. J. Phys. Chem. B 101, 8286–8291 (1997).

    CAS  Article  Google Scholar 

  42. Huang, K. et al. Ferrocene and porphyrin monolayers on Si(100) surfaces: preparation and effect of linker length on electron transfer. ChemPhysChem 10, 963–971 (2009).

    CAS  Article  Google Scholar 

  43. Yu, H. Z., Shao, H. B., Luo, Y., Zhang, H. L. & Liu, Z. F. Evaluation of the tunneling constant for long range electron transfer in azobenzene self-assembled monolayers on gold. Langmuir 13, 5774–5778 (1997).

    CAS  Article  Google Scholar 

  44. Boon, E. M. & Barton, J. K. Reduction of ferricyanide by methylene blue at a DNA-modified rotating-disk electrode. Langmuir 19, 9255–9259 (2003).

    CAS  Article  Google Scholar 

  45. Kelley, S. O., Jackson, N. M., Hill, M. G. & Barton, J. K. Long-range electron transfer through DNA films. Angew. Chem. Int. Ed. 38, 941–945 (1999).

    CAS  Article  Google Scholar 

  46. Gorodetsky, A. A., Green, O., Yavin, E. & Barton, J. K. Coupling into the base pair stack is necessary for DNA-mediated electrochemistry. Bioconjugate Chem. 18, 1434–1441 (2007).

    CAS  Article  Google Scholar 

  47. Drummond, T. G., Hill, M. G. & Barton, J. K. Electron transfer rates in DNA films as a function of tether length. J. Am. Chem. Soc. 126, 15010–15011 (2004).

    CAS  Article  Google Scholar 

  48. Arikuma, Y., Nakayama, H., Morita, T. & Kimura, S. Electron hopping over 100 Å along an α-helix. Angew. Chem. Int. Ed. 49, 1800–1804 (2010).

    CAS  Article  Google Scholar 

  49. Steenken, S., Telo, J. P., Novais, H. M. & Candeias, L. P. One-electron-reduction potentials of pyrimidine bases, nucleosides, and nucleotides in aqueous solution. Consequences for DNA redox chemistry. J. Am. Chem. Soc. 114, 4701–4709 (1992).

    CAS  Article  Google Scholar 

  50. Genereux, J. C., Augustyn, K. E., Davis, M. L., Shao, F. & Barton, J. K. Back-electron transfer suppresses the periodic length dependence of DNA-mediated charge transport across adenine tracts. J. Am. Chem. Soc. 130, 15150–15156 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health (GM61077). J.D.S. also thanks the National Institute of Biomedical Imaging and Bioengineering for a postdoctoral fellowship (F32EB007900). The authors thank J. Genereux, A. Gorodetsky and M. Buzzeo for discussions, and K. Kan for assistance with the fabrication of the silicon chips. This work was completed in part in the Caltech Micro Nano Fabrication Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

J.K.B., J.D.S. and N.B.M. conceived and designed the experiments. J.D.S., N.B.M. and S.E.R. carried out the experiments. J.D.S., N.B.M. and J.K.B. analysed the results and co-wrote the paper.

Corresponding author

Correspondence to Jacqueline K. Barton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 482 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Slinker, J., Muren, N., Renfrew, S. et al. DNA charge transport over 34 nm. Nature Chem 3, 228–233 (2011). https://doi.org/10.1038/nchem.982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.982

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing