Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diverting non-haem iron catalysed aliphatic C–H hydroxylations towards desaturations

Abstract

Carboxylate-ligated, non-haem iron enzymes demonstrate the capacity for catalysing such remarkable processes as hydroxylations, chlorinations and desaturations of inert, aliphatic C–H bonds. A key to functional diversity is the enzymes' ability to divert fleeting radicals towards different types of functionalization using active site and/or substrate modifications. We report that a non-haem iron hydroxylase catalyst [Fe(PDP)] can also be diverted to catalytic, mixed hydroxylase/desaturase activity with aliphatic C–H bonds. Using a taxane-based radical trap that rearranges under Fe(PDP) oxidation to furnish a nortaxane skeleton, we provide the first direct evidence for a substrate radical using this class of stereoretentive hydroxylation catalysts. Hydroxylation and desaturation proceed by means of a short-lived radical that diverges in a substrate-dependent manner in the presence of carboxylic acids. The novel biomimetic reactivity displayed by this small molecule catalyst is harnessed to diversify natural product derivatives as well as interrogate their biosynthetic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Substrate-dependent mixed hydroxylase/desaturase reactivity of non-haem iron catalysts with aliphatic C–H bonds.
Figure 2: Double-oxidation products arise from desaturation products (olefins) in a substrate-dependent manner.
Figure 3: Experiments probing a dehydration pathway in the formation of olefin intermediates.
Figure 4: Experiments probing the existence of a carbon-centred radical.
Figure 5: Rapid diversification of carboxylic acid natural product analogues.

Similar content being viewed by others

References

  1. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2010).

    Article  CAS  Google Scholar 

  2. Burk, M. J. & Crabtree, R. H. Selective catalytic dehydrogenation of alkanes to alkenes. J. Am. Chem. Soc. 109, 8025–8032 (1987).

    Article  CAS  Google Scholar 

  3. Liu, F., Pak, E. B., Singh, B., Jensen, C. M. & Goldman, A. S. Dehydrogenation of n-alkanes catalyzed by iridium ‘pincer’ complexes: regioselective formation of α-olefins. J. Am. Chem. Soc. 121, 4086–4087 (1999).

    Article  CAS  Google Scholar 

  4. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation–olefin metathesis. Science 312, 257–261 (2006).

    Article  CAS  Google Scholar 

  5. Wallar, B. J. & Lipscomb, J. D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 96, 2625–2657 (1996).

    Article  CAS  Google Scholar 

  6. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Jr. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem. Rev. 104, 939–986 (2004).

    Article  CAS  Google Scholar 

  7. Bruijnincx, P. C. A., van Koten, G. & Gebbink, R. J. M. K. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. Chem. Soc. Rev. 37, 2716–2744 (2008).

    Article  CAS  Google Scholar 

  8. Buist, P. H. Fatty acid desaturases: selecting the dehydrogenation channel. Nat. Prod. Rep. 21, 249–262 (2004).

    Article  CAS  Google Scholar 

  9. Vaillancourt, F. H., Yeh, E., Vosburg, D. A., Garneau-Tsodikova, S. & Walsh, C. T. Nature's inventory of halogenation catalysts: oxidative strategies predominate. Chem. Rev. 106, 3364–3378 (2006).

    Article  CAS  Google Scholar 

  10. Salowe, S. P., Marsh, E. N. & Townsend, C. A. Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: an unusual oxidative enzyme in natural product biosynthesis. Biochemistry 29, 6499–6508 (1990).

    Article  CAS  Google Scholar 

  11. Zhou, J. et al. Spectroscopic studies of substrate interactions with clavaminate synthase 2, a multifunctional α-KG-dependent non-heme iron enzyme: correlation with mechanisms and reactivities. J. Am. Chem. Soc. 123, 7388–7398 (2001).

    Article  CAS  Google Scholar 

  12. Kumar, D., de Visser, S. P. & Shaik, S. Oxygen economy of cytochrome p450: what is the origin of the mixed functionality as a dehydrogenase–oxidase enzyme compared with its normal function? J. Am. Chem. Soc. 126, 5072–5073 (2004) and references therein.

    Article  CAS  Google Scholar 

  13. Mukherjee, A., Martinho, M., Bominaar, E. L., Münck, E. & Que, L. Jr. Shape-selective interception by hydrocarbons of the O2-derived oxidant of a biomimetic nonheme iron complex. Angew. Chem. Int. Ed. 48, 1780–1783 (2009).

    Article  CAS  Google Scholar 

  14. Wang, D., Farquhar, E. R., Stubna, A., Münck, E. & Que, L. Jr. A diiron(IV) complex that cleaves strong C–H and O–H bonds. Nature Chem. 1, 145–150 (2009).

    Article  CAS  Google Scholar 

  15. Kim, C., Dong, Y. & Que, L., Jr. Modeling nonheme diiron enzymes: hydrocarbon hydroxylation and desaturation by a high-valent Fe2O2 diamond core. J. Am. Chem. Soc. 119, 3635–3636 (1997).

    Article  CAS  Google Scholar 

  16. Hull, J. F. et al. Manganese catalysts for C–H activation: an experimental/theoretical study identifies the stereoelectronic factor that controls the switch between hydroxylation and desaturation pathways. J. Am. Chem. Soc. 132, 7605–7616 (2010).

    Article  CAS  Google Scholar 

  17. Chen, M. S. & White, M. C. A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    Article  CAS  Google Scholar 

  18. Vermeulen, N. A., Chen, M. S. & White, M. C. The Fe(PDP)-catalyzed aliphatic C–H oxidation: a slow addition protocol. Tetrahedron 65, 3078–3084 (2009).

    Article  CAS  Google Scholar 

  19. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    Article  CAS  Google Scholar 

  20. White, M. C., Doyle, A. G. & Jacobsen, E. N. A synthetically useful, self-assembling MMO mimic system for catalytic alkene epoxidation with aqueous H2O2 . J. Am. Chem. Soc. 123, 7194–7195 (2001).

    Article  CAS  Google Scholar 

  21. Fujita, M. & Que, L. Jr. In situ formation of peracetic acid in iron-catalyzed epoxidations by hydrogen peroxide in the presence of acetic acid. Adv. Synth. Catal. 346, 190–194 (2004).

    Article  CAS  Google Scholar 

  22. Mas-Ballesté, R. & Que, L. Jr. Iron-catalyzed olefin epoxidation in the presence of acetic acid: insights into the nature of the metal-based oxidant. J. Am Chem. Soc. 129, 15964–15972 (2007).

    Article  Google Scholar 

  23. Curci, R., D'Accolti, L. & Fusco, C. A novel approach to the efficient oxygenation of hydrocarbons under mild conditions. Superior oxo transfer selectivity using dioxiranes. Acc. Chem. Res. 39, 1–9 (2006).

    Article  CAS  Google Scholar 

  24. Newcomb, M. & Toy, P. H. Hypersensitive radical probes and the mechanisms of cytochrome P450-catalyzed hydroxylation reactions. Acc. Chem. Res. 33, 449–455 (2000) and references therein.

    Article  CAS  Google Scholar 

  25. Chen, S.-H., Huang, S., Gao, Q., Golik, J. & Farina, V. The chemistry of taxanes: skeletal rearrangements of baccatin derivatives via radical intermediates. J. Org. Chem. 59, 1475–1484 (1994).

    Article  CAS  Google Scholar 

  26. Horiguchi, T., Cheng, Q. & Oritani, T. Highly regio- and stereospecific hydroxylation of C-1 position of 2-deacetoxytaxinine J derivative with DMDO. Tetrahedron Lett. 41, 3907–3910 (2000).

    Article  CAS  Google Scholar 

  27. Baloglu, E. & Kingston, D. G. I. The taxane diterpenoids. J. Nat. Prod. 62, 1448–1472 (1999).

    Article  CAS  Google Scholar 

  28. Zhang, S. et al. Structure and stereochemistry of taxuchin A, a new 11(15→1) abeotaxane type diterpene from taxus chinensis. Chem. Commun. 1561–1562 (1994).

  29. Hu, S., Sun, D.-A., Tian, X. & Fang, Q. Selective microbial hydroxylation and biological rearrangment of taxoids. Tetrahedron Lett. 38, 2721–2724 (1997).

    Article  CAS  Google Scholar 

  30. Chen, K. & Que, L. Jr. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an FeV=O active species. J. Am. Chem. Soc. 123, 6327–6337 (2001).

    Article  CAS  Google Scholar 

  31. Bartlett, P. D., Pincock, R. E., Rolston, J. H., Schindel, W. G. & Singer, L. A. The stereochemistry of 9-decalyl free radicals. J. Am. Chem. Soc. 87, 2590–2596 (1965).

    Article  CAS  Google Scholar 

  32. Choi, S.-Y. & Newcomb, M. Picosecond radical kinetics. Alkoxycarbonyl accelerated cyclopropylcarbinyl radical ring openings. Tetrahedron 51, 657–664 (1995).

    Article  CAS  Google Scholar 

  33. Ticku, M. K. & Olsen, R. W. Picrotoxinin binding sites in brain, in Brain Receptor Methodologies Part B Amino Acids. Peptides. Psychoactive drugs (eds Marangos, P.J., Campbell, I.C. & Cohen, R.M.) 211–229 (Academic Press, 1984).

    Google Scholar 

  34. Bodner, M. J., Phelan, R. M., Freeman, M. F., Li, R. & Townsend, C. A. Non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics. J. Am. Chem. Soc. 132, 12–13 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Pfizer, Bristol-Myers Squibb and UIUC for financial support. M.A.B. is supported by an Illinois Distinguished Fellowship (2007-2010) and a Harold R. Snyder Fellowship (2010-2011). S.A.R. is supported by the National Science Foundation under the Center for Chemical Innovation in Stereoselective C–H Functionalization (CHE-0943980) and by an Ullyot Graduate Fellowship (2009-2010). J. Guerra and R.M. Williams are thanked for providing the (+)-taxusin used in the radical trap experiments.

Author information

Authors and Affiliations

Authors

Contributions

M.A.B. and M.C.W. conceived and designed the experiments outlined in Figs 1 3,4b, and M.A.B. performed these experiments. S.A.R. and M.C.W. conceived and designed the experiments outlined in Figs 4a,5 and S.A.R. performed these experiments. M.A.B and M.C.W co-wrote the paper, with assistance from S.A.R.

Corresponding author

Correspondence to M. Christina White.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigi, M., Reed, S. & White, M. Diverting non-haem iron catalysed aliphatic C–H hydroxylations towards desaturations. Nature Chem 3, 216–222 (2011). https://doi.org/10.1038/nchem.967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing