Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy

Abstract

Electrochemical impedance spectroscopy is a crucial tool for the detection and study of various biological substances, from DNA and proteins to viruses and bacteria. It does not require any labelling species, and methods based on it have been developed to study cellular processes (such as cell spreading, adhesion, invasion, toxicology and mobility). However, data have so far lacked spatial information, which is essential for investigating heterogeneous processes and imaging high-throughput microarrays. Here, we report an electrochemical impedance microscope based on surface plasmon resonance that resolves local impedance with submicrometre spatial resolution. We have used an electrochemical impedance microscope to monitor the dynamics of cellular processes (apoptosis and electroporation of individual cells) with millisecond time resolution. The high spatial and temporal resolution makes it possible to study individual cells, but also resolve subcellular structures and processes without labels, and with excellent detection sensitivity (~2 pS). We also describe a model that simulates cellular and electrochemical impedance microscope images based on local dielectric constant and conductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical impedance microscopy.
Figure 2: Impedance images of a single cell and model simulation.
Figure 3: Monitoring single cell apoptosis with EIM.
Figure 4: Monitoring single cell electroporation with EIM.

Similar content being viewed by others

References

  1. Katz, E. & Willner, I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanal. 15, 913–947 (2003).

    Article  CAS  Google Scholar 

  2. Maalouf, R. et al. Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface plasmon resonance. Anal. Chem. 79, 4879–4886 (2007).

    Article  CAS  Google Scholar 

  3. Giaever, I. & Keese, C. R. A morphological biosensor for mammalian cells. Nature 366, 591–592 (1993).

    Article  CAS  Google Scholar 

  4. Giaever, I. & Keese, C. R. Monitoring fibroblast behavior in tissue-culture with an applied electric field. Proc. Natl Acad. Sci. USA 81, 3761–3764 (1984).

    Article  CAS  Google Scholar 

  5. Slack, M. D., Martinez, E. D., Wu, L. F. & Altschuler, S. J. Characterizing heterogeneous cellular responses to perturbations. Proc. Natl Acad. Sci. USA 105, 19306–19311 (2008).

    Article  CAS  Google Scholar 

  6. Schulte, A. & Schuhmann, W. Single-cell microelectrochemistry. Angew. Chem. Int. Ed. 46, 8760–8777 (2007).

    Article  CAS  Google Scholar 

  7. Rothermel, A. et al. Real-time measurement of PMA-induced cellular alterations by microelectrode array-based impedance spectroscopy. BioTechniques 41, 445–450 (2006).

    Article  CAS  Google Scholar 

  8. Rahman, A. R. A., Register, J., Vuppala, G. & Bhansali, S. Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap). Physiol. Meas. 29, S227–S239 (2008).

    Article  CAS  Google Scholar 

  9. Chai, K. T. C., Davies, J. H. & Cumming, D. R. S. Electrical impedance tomography for sensing with integrated microelectrodes on a CMOS microchip. Sens. Actuators B 127, 97–101 (2007).

    Article  CAS  Google Scholar 

  10. Lin, Z., Ino, K., Shiku, H. & Matsue, T. Electrochemical topography of a cell monolayer with an addressable microelectrode array. Chem. Commun. 46, 559–561 (2010).

    Article  CAS  Google Scholar 

  11. Alpuche-Aviles, M. A. & Wipf, D. O. Impedance feedback control for scanning electrochemical microscopy. Anal. Chem. 73, 4873–4881 (2001).

    Article  CAS  Google Scholar 

  12. Katemann, B. B., Schulte, A., Calvo, E. J., Koudelka-Hep, M. & Schuhmann, W. Localised electrochemical impedance spectroscopy with high lateral resolution by means of alternating current scanning electrochemical microscopy. Electrochem. Commun. 4, 134–138 (2002).

    Article  CAS  Google Scholar 

  13. Ervin, E. N., White, H. S. & Baker, L. A. Alternating current impedance imaging of membrane pores using scanning electrochemical microscopy. Anal. Chem. 77, 5564–5569 (2005).

    Article  CAS  Google Scholar 

  14. Rothenhausler, B. & Knoll, W. Surface-plasmon microscopy. Nature 332, 615–617 (1988).

    Article  Google Scholar 

  15. Andersson, O., Ulrich, C., Bjorefors, F. & Liedberg, B. Imaging SPR for detection of local electrochemical processes on patterned surfaces. Sens. Actuators B 134, 545–550 (2008).

    Article  CAS  Google Scholar 

  16. Shan, X. N., Patel, U., Wang, S. P., Iglesias, R. & Tao, N. J. Imaging local electrochemical current via surface plasmon resonance. Science 327, 1363–1366 (2010).

    Article  CAS  Google Scholar 

  17. Foley, K. J., Shan, X. & Tao, N. J. Surface impedance imaging technique. Anal. Chem. 80, 5146–5151 (2008).

    Article  CAS  Google Scholar 

  18. Giaever, I. & Keese, C. R. Micromotion of mammalian cells measured electrically. Proc. Natl Acad. Sci. USA 88, 7896–7900 (1991).

    Article  CAS  Google Scholar 

  19. Urdapilleta, E., Bellotti, M. & Bonetto, F. J. Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing technique. Phys. Rev. E 74, 041908 (2006).

    Article  CAS  Google Scholar 

  20. Bremer, E., van Dam, G., Kroesen, B., de Leij, L. & Helfrich, W. Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends Mol. Med. 12, 382–393 (2006).

    Article  CAS  Google Scholar 

  21. Hougardy, B. M. T. et al. Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis. Int. J. Cancer 118, 1892–1900 (2006).

    Article  CAS  Google Scholar 

  22. Aihara, H. & Miyazaki, J.-I. Gene transfer into muscle by electroporation in vivo. Nature Biotechnol. 16, 867–870 (1998).

    Article  CAS  Google Scholar 

  23. Olofsson, J. et al. Single-cell electroporation. Curr. Opin. Biotechnol. 14, 29–34 (2003).

    Article  CAS  Google Scholar 

  24. Keese, C. R., Wegener, J., Walker, S. R. & Giaever, I. Eletrical wound-healing assay for cells in vitro. Proc. Natl Acad. Sci. USA 101, 1554–1559 (2004).

    Article  CAS  Google Scholar 

  25. Huang, B., Yu, F. & Zare, R. N. Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal. Chem. 79, 2979–2983 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institutes of Health (NIH, R21RR026235) and National Science Foundation (NSF, CHE-0554786) for support.

Author information

Authors and Affiliations

Authors

Contributions

K.F. performed initial impedance imaging of cells. W.W. carried out the measurement and data analysis presented here. X.S. contributed to numerical simulation and prepared gold chips. S.E., V.J.N. and P.W. helped with cell culture. K.F. and U.P. developed imaging processing software. W.W., K.F. and S.W. designed and set up the experiment. N.J.T. conceived the experiment and model simulation, and wrote the paper.

Corresponding author

Correspondence to Nongjian Tao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1904 kb)

Supplementary information

Supplementary movie S1 (MOV 199 kb)

Supplementary information

Supplementary movie S2 (MOV 328 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Foley, K., Shan, X. et al. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy. Nature Chem 3, 249–255 (2011). https://doi.org/10.1038/nchem.961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing