Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic DNA nanotechnology using strand-displacement reactions

Abstract

The specificity and predictability of Watson–Crick base pairing make DNA a powerful and versatile material for engineering at the nanoscale. This has enabled the construction of a diverse and rapidly growing set of DNA nanostructures and nanodevices through the programmed hybridization of complementary strands. Although it had initially focused on the self-assembly of static structures, DNA nanotechnology is now also becoming increasingly attractive for engineering systems with interesting dynamic properties. Various devices, including circuits, catalytic amplifiers, autonomous molecular motors and reconfigurable nanostructures, have recently been rationally designed to use DNA strand-displacement reactions, in which two strands with partial or full complementarity hybridize, displacing in the process one or more pre-hybridized strands. This mechanism allows for the kinetic control of reaction pathways. Here, we review DNA strand-displacement-based devices, and look at how this relatively simple mechanism can lead to a surprising diversity of dynamic behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA switches.
Figure 2: Logic gates and cascaded circuits64.
Figure 3: Complex dynamics (in this case, a limit cycle oscillator) with DNA strand-displacement reaction networks.
Figure 4: Controlling the self-assembly of DNA nanostructures with strand displacement74.
Figure 5: DNA amplification by non-covalent catalysis88.
Figure 6: An autonomous, processive and directional DNA walker based on strand displacement95.

Similar content being viewed by others

References

  1. Bloomfield, V. A., Crothers, D. M. & Tinoco, I. Jr Nucleic Acids: Structures, Properties, and Functions (University Science Books, 2000).

    Google Scholar 

  2. SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biochem. 33, 415–440 (2004).

    CAS  Google Scholar 

  3. Carlson, R. The changing economics of DNA synthesis. Nature Biotechnol. 27, 1091–1094 (2009).

    CAS  Google Scholar 

  4. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    CAS  PubMed  Google Scholar 

  5. Chen, J. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  PubMed  Google Scholar 

  6. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    CAS  PubMed  Google Scholar 

  7. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Shih, W. M. & Lin, C. Knitting complex weaves with DNA origami. Curr. Opin. Struct. Biol. 20, 276–282 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu, Y. & Liu, J. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr. Opin. Biotechnol. 17, 580–588 (2006).

    CAS  PubMed  Google Scholar 

  11. Willner, I., Shlyahovsky, B., Zayats, M. & Willner, B. DNAzymes for sensing, nanobiotechnology, and logic gate applications. Chem. Soc. Rev. 37, 1153–1165 (2008).

    CAS  PubMed  Google Scholar 

  12. Yeh, B. J. & Lim, W. A. Synthetic biology: lessons from the history of synthetic organic chemistry. Nature Chem. Biol. 3, 521–525 (2007).

    CAS  Google Scholar 

  13. Purnick, P. E. M. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nature Rev. Mol. Cell Biol. 10, 410–422 (2009).

    CAS  Google Scholar 

  14. Isaacs, F. J., Dwyer, D. J. & Collins, J. J. RNA synthetic biology. Nature Biotechnol. 24, 545–554 (2006).

    CAS  Google Scholar 

  15. Steed, J. W. & Atwood J. L. Supramolecular Chemistry (Wiley, 2009).

    Google Scholar 

  16. Epstein, I. R. & Pojman, J. A. An Introduction to Nonlinear Chemical Dynamics (Oxford Univ. Press, 1998).

    Google Scholar 

  17. Yurke, B. & Mills, A. P. Using DNA to power nanostructures. Genet. Program. Evolvable Machines 4, 111–122 (2003).

    Google Scholar 

  18. Li, Q., Luan G., Guo, Q. & Liang J. A new class of homogeneous nucleic acid probe based on specific displacement hybridization. Nucleic Acids Res. 30, e5 (2002).

    PubMed  PubMed Central  Google Scholar 

  19. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    CAS  PubMed  Google Scholar 

  20. Lizardi, P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 19, 225–232 (1998).

    CAS  PubMed  Google Scholar 

  21. Lee, C. S., Davis, R. W. & Davidson, N. A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. J. Mol. Biol. 48, 1–22 (1970).

    CAS  PubMed  Google Scholar 

  22. Meselson, M. S. & Radding, C. M. A general model for genetic recombination. Proc. Natl Acad. Sci.USA 72, 358–361 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson, B. H. & Seeman, N. C. Simulation of double-stranded branch point migration. Biophys. J. 51, 611–626 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Radding, C. M., Beattie, K. L., Holloman, W. K. & Wiegand, R. C. Uptake of homologous single-stranded fragments by superhelical DNA. J. Mol. Biol. 116, 859–839 (1977).

    Google Scholar 

  25. Panyutin, I. G. & Hsieh, P. The kinetics of spontaneous DNA branch migration. Proc. Natl Acad. Sci. USA 91, 2021–2025 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Green, C. & Tibbetts, C. Reassociation rate limited displacement of DNA strands by branch migration. Nucleic Acids Res. 9, 1905 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weinstock, P. H. & Wetmur, J. G. Branch capture reactions — effect of recipient structure. Nucleic Acids Res. 18, 4207–4213 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reynaldo, L. P., Vologodskii, A. V., Neri, B. P. & Lyamichev, V. I. The kinetics of oligonucleotide replacements. J. Mol. Biol. 297, 511–520 (2000).

    CAS  PubMed  Google Scholar 

  29. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  PubMed  Google Scholar 

  30. Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B–Z transition of DNA. Nature 397, 144–146 (1999).

    CAS  PubMed  Google Scholar 

  31. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2006).

    Google Scholar 

  32. Bath, J. & Turberfield, A. J. DNA nanomachines. Nature Nanotech. 2, 275–284 (2007).

    CAS  Google Scholar 

  33. Liu, H. & Liu, D. S. DNA nanomachines and their functional evolution. Chem. Commun. 19, 2625–2636 (2009).

    Google Scholar 

  34. Simmel, F. C. & Yurke, B. Using DNA to construct and power a nanoactuator. Phys. Rev. E 63, 041913 (2001).

    CAS  Google Scholar 

  35. Simmel, F. C. & Yurke, B. A DNA-based molecular device switchable between three distinct mechanical states. Appl. Phys. Lett. 80, 883–885 (2002).

    CAS  Google Scholar 

  36. Tian, Y. & Mao, C. Molecular gears: A pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 126, 11410–11411 (2004).

    CAS  PubMed  Google Scholar 

  37. Yan, H., Zhang, X. P., Shen, Z. Y & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    CAS  PubMed  Google Scholar 

  38. Chakraborty, B., Sha, R. & Seeman, N. C. A DNA-based nanomechanical device with three robust states. Proc. Natl Acad. Sci.USA 45, 17245–17249 (2008).

    Google Scholar 

  39. Zhong, H. & Seeman, N. C. RNA used to control a DNA rotary nanomachine. Nano Lett. 6, 2899–2903 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding, B. & Seeman, N. C. Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314, 1583–1585 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng, L. P., Park, S. H., Reif, J. H. & Yan, H. A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342–4346 (2003).

    CAS  Google Scholar 

  42. Lubrich, D., Lin, J. & Yan, J. A contractile DNA machine. Angew. Chem. Int. Ed. 47, 7026–7028 (2008).

    CAS  Google Scholar 

  43. Goodman, R. P. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nature Nanotech. 3, 93–96 (2008).

    CAS  Google Scholar 

  44. Rothemund, P. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  PubMed  Google Scholar 

  45. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    CAS  PubMed  Google Scholar 

  46. Hazarika, P., Ceyhan, B. & Niemeyer, C. M. Reversible switching of DNA-gold nanoparticle aggregation. Angew. Chem. Int. Ed. 116, 6631–6633 (2004).

    Google Scholar 

  47. Lin, D. C., Yurke, B. & Langrana, N. A. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126, 104–110 (2004).

    PubMed  Google Scholar 

  48. Sherman, W. B. & Seeman, N. C. A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004).

    CAS  Google Scholar 

  49. Shin, J. S. & Pierce, N. A. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).

    CAS  PubMed  Google Scholar 

  50. Gu, H., Chao J., Xiao, S. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Win, M. N. & Smolke, C. D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol. 2, 68–79 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. Simpson, Z. B., Tsai, T. L., Nguyen, N., Chen, X. & Ellington, A. D. Modelling amorphous computations with transcription networks. J. R. Soc. Interface 6, S523–S533 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. de Silva, A. P. & Uchiyama, S. Molecular logic and computing. Nature Nanotech. 2, 399–410 (2007).

    CAS  Google Scholar 

  55. Ashkenasy, G. & Ghadiri, M. R. Boolean logic functions of a synthetic peptide network. J. Am. Chem. Soc. 126, 11140–11141 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z. & Shapiro, E. Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001).

    CAS  PubMed  Google Scholar 

  57. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E. An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004).

    CAS  PubMed  Google Scholar 

  58. Stojanovic, M. N., Mitchell, T. E. & Stefanovic, D. Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124, 3555–3561 (2002).

    CAS  PubMed  Google Scholar 

  59. Stojanovic, M. N. & Stefanovic, D. A deoxyribozyme-based molecular automaton. Nature Biotechnol. 21, 1069–1074 (2003).

    CAS  Google Scholar 

  60. Lederman, H., Macdonald, J., Stephanovic, D. & Stojanovic, M. N. Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45, 1194–1199 (2006).

    CAS  PubMed  Google Scholar 

  61. Yashin, R., Rudchenko, S. & Stojanovic, M. N. Networking particles over distance using oligonucleotide-based devices. J. Am. Chem. Soc. 129, 15581–15584 (2007).

    CAS  PubMed  Google Scholar 

  62. Penchovsky, R. & Breaker, R. R. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nature Biotechnol. 23, 1424–1433 (2005).

    CAS  Google Scholar 

  63. Takahashi, K., Yaegashi, S., Kameda, A. & Hagiya, M. Chain reaction systems based on loop dissociation of DNA. Lect. Notes Comput. Sci. 3892, 347–358 (2006).

    Google Scholar 

  64. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    CAS  PubMed  Google Scholar 

  65. Frezza, B. M., Cockroft, S. L. & Ghadiri, M. R. Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc. 129, 14875–14879 (2007).

    CAS  PubMed  Google Scholar 

  66. Picuri, J. M., Frezza, B. M. & Ghadiri, M. R. Universal translators for nucleic acid diagnosis. J. Am. Chem. Soc. 131, 9368–9377 (2009).

    CAS  PubMed  Google Scholar 

  67. Qian, L. & Winfree, E. A simple DNA gate motif for synthesizing large-scale circuits. Lect. Notes Comput. Sci. 5347, 70–89 (2009).

    Google Scholar 

  68. Soloveichik, D., Seelig, G. & Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl Acad. Sci. USA 107, 5393–5398 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Oishi, K. & Klavins, E. A biomolecular implementation of linear I/O systems. IET Syst. Biol. (in the press).

  70. Cardelli, L. Strand algebras for DNA computing. Lect. Notes Comput. Sci. 5877, 12–24 (2008).

    Google Scholar 

  71. Phillips, A. & Cardelli, L. A programming language for composable DNA circuits. J. R. Soc. Interface 6, S419–S436 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cardelli, L. in Proc. 6th Workshop Developments in Computational Models (eds Cooper, S. B., Kashefi, E. & Panangaden, P.) Electr. Proc. Theor. Comput. Sci. 26, 33–47 (2010).

    Google Scholar 

  73. Chen, X. & Ellington, A. D. Shaping up nucleic acid computation. Curr. Opin. Biotechnol. 21, 392–400 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dirks, R. M. & Pierce, N. A. Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–1278 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Venkataraman, S., Dirks, R. M., Rothemund, P. W. K., Winfree, E. & Pierce, N. An autonomous polymerization motor powered by DNA hybridization. Nature Nanotech. 2, 490–494 (2007).

    Google Scholar 

  76. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    CAS  PubMed  Google Scholar 

  77. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  PubMed  Google Scholar 

  78. Rothemund, P. W. K., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, 2041–2053 (2004).

    CAS  Google Scholar 

  79. Schulman, R. & Winfree, E. Synthesis of crystals with a programmable kinetic barrier to nucleation. Proc. Natl Acad. Sci. USA 104, 15236–15241 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lubrich, D., Green, S. J. & Turberfield, A. J. Kinetically controlled self-assembly of DNA oligomers. J. Am. Chem. Soc. 131, 2242–2243 (2009).

    Google Scholar 

  81. Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    CAS  PubMed  Google Scholar 

  82. Green, S., Bath, J. & Turberfield, A. J. Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett. 101, 238101 (2008).

    CAS  PubMed  Google Scholar 

  83. Bath, J., Green, S. J., Allen, K. E. & Turberfield, A. J. Mechanism for a directional, processive, and reversible DNA motor. Small 5, 1513–1516 (2009).

    CAS  PubMed  Google Scholar 

  84. Bois, J. S. et al. Topological constraints in nucleic acid hybridization kinetics. Nucleic Acids Res. 33, 4090–4095 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Green, S. J., Lubrich, D. & Turberfield, A. J. DNA hairpins: fuel for autonomous DNA devices. Biophys. J. 91, 2966–2975 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Seelig, G., Yurke, B. & Winfree, E. Catalyzed relaxation of a metastable DNA fuel. J. Am. Chem. Soc. 128, 12211–12220 (2006).

    CAS  PubMed  Google Scholar 

  87. Tyagi, S. & Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 (1996).

    CAS  Google Scholar 

  88. Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007).

    CAS  PubMed  Google Scholar 

  89. Zhang, D. Y. & Winfree, E. Dynamic allosteric control of noncovalent DNA catalysis reactions. J. Am. Chem. Soc. 130, 13921–13926 (2008).

    CAS  PubMed  Google Scholar 

  90. Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tian, Y., He, Y. Chen, Y., Yin, P. & Mao, C. D. Molecular devices — a DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005).

    CAS  Google Scholar 

  92. Yin, P., Yan, H., Daniell, X. G., Turberfield, A. J. & Reif, J. H. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004).

    CAS  Google Scholar 

  93. Pei, R. et al. Behavior of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc. 128, 12693–12699 (2006).

    CAS  PubMed  Google Scholar 

  94. Bishop, J. D. & Klavins, E. An improved autonomous DNA nanomotor. Nano Lett. 7, 2574–2577 (2007).

    CAS  PubMed  Google Scholar 

  95. Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA brownian motor with coordinated legs. Science 324, 67–71 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gao, Y., Wolf, L. K. & Georgiadis, R. M. Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Res. 34, 3370–3377 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, D. Y. & Winfree, E. Robustness and modularity properties of a non-covalent DNA catalytic reaction. Nucleic Acids Res. 38, 4182–4197 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Seeman, N. C. De novo design of sequences for nucleic acid structural engineering. J. Biomol. Struct. Dyn. 8, 573–581 (1990).

    CAS  PubMed  Google Scholar 

  100. Dirks, R. M., Lin, M., Winfree, E. & Pierce, N. A. Paradigms for computational nucleic acid design. Nucleic Acids Res. 32, 1392–1403 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tulpan, D. et al. Thermodynamically based DNA strand design. Nucleic Acids Res. 33, 4951–4964 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sager, J. & Stefanovic, D. Designing nucleotide sequences for computation: a survey of constraints. Lect. Notes Comput. Sci. 3892, 275–289 (2006).

    Google Scholar 

  103. Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E. & Pierce, N. A. Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007).

    Google Scholar 

  104. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–15, (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mir, K. U. in DNA Based Computers II 243–246 (DIMACS Series in Discrete Mathematics and Theoretical Computer Science 44, Am. Math. Soc., 1998).

    Google Scholar 

  106. Temsamani, J., Kubert, M. & Agrawal, S. Sequence identity of the n-1 product of a synthetic oligonucleotide. Nucleic Acids Res. 23, 1841–1844 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Flamm, C., Fontana, W., Hofacker, I. L & Schuster, P. RNA folding at elementary step resolution. RNA 6, 325–338 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gartner, Z. J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    CAS  PubMed  Google Scholar 

  110. Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

    CAS  Google Scholar 

  111. Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nature Nanotech. 5, 61–66 (2010).

    CAS  Google Scholar 

  112. Yurke, B., Mills, A. P. Jr & Cheng, S. L. DNA implementation of addition. BioSystems 52, 165–174 (1999).

    CAS  PubMed  Google Scholar 

  113. Venkataraman, S., Dirks, R. M., Ueda, C. T. & Pierce, N. Selective cell death mediated by small conditional RNAs. Proc. Natl Acad. Sci. USA 107, 16777–16783 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Xie, Z., Liu, S. J., Bleris L. & Benenson, Y. Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Res. 38, 2692–2701 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Isaacs, F. J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnol. 22, 841–847 (2004).

    CAS  Google Scholar 

  116. Petersen, M. & Wengel, J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. 21, 74–81, (2003).

    CAS  PubMed  Google Scholar 

  117. He, G., Rapireddy, S., Bahal, R., Sahu, B. & Ly, D. H. Strand invasion of extended, mixed-sequence B-DNA by gamma PNAs. J. Am. Chem. Soc. 131, 12088–12090 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Krueger, A. T. & Kool, E. T. Redesigning the architecture of the base pair: toward biochemical and biological function of new genetic sets. Chem Biol. 16, 242–248 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Klavins, N. Pierce, N. Seeman, D. Soloveichik, E. Winfree and P. Yin for discussions. D.Y.Z. was supported by the Fannie and John Hertz Foundation, and is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation. G.S. is supported by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and NSF CAREER award No. 0954566.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Yu Zhang or Georg Seelig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chem 3, 103–113 (2011). https://doi.org/10.1038/nchem.957

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing