Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strained endotaxial nanostructures with high thermoelectric figure of merit


Thermoelectric materials can directly generate electrical power from waste heat but the challenge is in designing efficient, stable and inexpensive systems. Nanostructuring in bulk materials dramatically reduces the thermal conductivity but simultaneously increases the charge carrier scattering, which has a detrimental effect on the carrier mobility. We have experimentally achieved concurrent phonon blocking and charge transmitting via the endotaxial placement of nanocrystals in a thermoelectric material host. Endotaxially arranged SrTe nanocrystals at concentrations as low as 2% were incorporated in a PbTe matrix doped with Na2Te. This effectively inhibits the heat flow in the system but does not affect the hole mobility, allowing a large power factor to be achieved. The crystallographic alignment of SrTe and PbTe lattices decouples phonon and electron transport and this allows the system to reach a thermoelectric figure of merit of 1.7 at ~800 K.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Electrical transport properties of PbTe-SrTe.
Figure 2: Thermal transport properties of PbTe–SrTe.
Figure 3: TEM and strain analysis of PbTe–SrTe.
Figure 4: ZT of PbTe–SrTe.


  1. Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J. P. & Caillat, T. Recent development in thermoelectric materials. Int. Matter. Rev. 48, 45–66 (2003).

    Article  CAS  Google Scholar 

  2. Rowe, D. M. CRC Handbook of Thermoelectrics: Macro to Nano (CRC Press/Taylor & Francis, 2006).

  3. Snyder, J. G. & Toberer, E. S. Complex thermoelctric materials. Nature Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  4. Sootsman, J., Chung, D. Y. & Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616–8639 (2009).

    Article  CAS  Google Scholar 

  5. Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008).

    Article  CAS  Google Scholar 

  6. Ahmad, S., Hoang, K. & Mahanti, S. D. Ab Initio study of deep defect states in narrow band-gap semiconductors: group III impurities in PbTe. Phys. Rev. Lett. 96, 56403(1–4) (2006).

  7. Sootsman, J. R. et al. Large enhancement in the power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem. Int. Ed. 47, 8618–8622 (2008).

    Article  CAS  Google Scholar 

  8. Hsu, K. F. et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004).

    Article  CAS  Google Scholar 

  9. Quarez, E. et al. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m. The myth of solid solutions. J. Am. Chem. Soc. 127, 9177–9190 (2005).

    Article  CAS  Google Scholar 

  10. Zhou, M., Li, J.-F. & Kita, T. Nanostructured AgPbmSbTe2+m system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 130, 4527–4532 (2008).

    Article  CAS  Google Scholar 

  11. Androulakis, J. et al. Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m . Adv. Mater. 18, 1170–1173 (2006).

    Article  CAS  Google Scholar 

  12. Poudeu, P. F. P. et al. High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTe2+m . Angew. Chem. Int. Ed. 45, 3835–3839 (2006).

    Article  CAS  Google Scholar 

  13. Androulakis, J. et al. Spinoidal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectric: enhanced performance in Pb1-xSnxTe−PbS. J. Am. Chem. Soc. 129, 9780–9788 (2007).

    Article  CAS  Google Scholar 

  14. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  15. Venkatasubramanian, R., Siivola, E., Colpitts, V. & O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  16. Slack, G. A. New materials and performance limits for thermoelectric cooling. In CRC Hand Book of Thermoelectrics (Ed. D. M. Rowe), 407–440 (CRC Press, Boca Raton, 1995).

    Google Scholar 

  17. Allgaier, R. S. & Houston, B. B. Jr. Hall coefficient behavior and second valence band in lead telluride. J. Appl. Phys. 37, 302–309 (1966).

    Article  CAS  Google Scholar 

  18. Ravich, Y. I., Efimova, B. A. & Smirnov, I. A. Semiconducting Lead Chalcogenides (Plenum, New York, vol. 5, 1970).

  19. Crocker, A. J. & Rogers, L. M. Valence band structure of PbTe. J. Phys. Colloques 29, C4-129–C4-132 (1968).

    Article  Google Scholar 

  20. Dawar, A. L., Taneja, O. P., Paradkar, S. K., Kumar, P. & Mathur, P. C. Electrical transport properties of thallium-doped p-type PbTe films. Thin Solid Films 78, 153–159 (1981).

    Article  CAS  Google Scholar 

  21. Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967).

    Article  CAS  Google Scholar 

  22. Rogers, L. M. The Hall mobility and thermoelectric power of p-type lead telluride. Brit. J. Appl. Phys. 18, 1227–1235 (1967).

    Article  CAS  Google Scholar 

  23. Vineis, C. J. et al. Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattice. Phys. Rev. B 77, 235202-1-14 (2008).

    Article  Google Scholar 

  24. Partin, D. L., Thrush, C. M. & Clemens, B. M. Lead strontium telluride and lead barium telluride grown by molecular-beam epitaxy. J. Vac. Sci. Technol. B 5, 686–689 (1987).

    Article  CAS  Google Scholar 

  25. Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  CAS  Google Scholar 

  26. Callaway, J. & Von Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 120, 1149–1154 (1960).

    Article  CAS  Google Scholar 

  27. Morelli, D. T. & Heremans, J. P. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Phys. Rev. B 66, 195304 (2002).

    Article  Google Scholar 

  28. Chen, G., Dames, C., Song, D. & Harris, C. T. in Thermal conductivity 27/thermal expansion 15 (Eds. Huang, H. & Porter, W.) 263–269 (DEStech Publication, 2004).

  29. Chen, G., Zeng, T., Borca-Tascius, T. & Song, D. Phonon engineering in nanostructures for solid-state energy conversion. Mat. Sci. Eng. A 292, 155–161 (2000).

    Article  Google Scholar 

  30. Kim, W. & Majumdar, A. Phonon scattering cross section of polydispersed spherical nanoparticles. J. Appl. Phys. 99, 084306 (2006).

    Article  Google Scholar 

  31. Mingo, N., Hauser, D., Kobayashi, N. P., Plissonnier, M. & Shakouri, A. ‘Nanoparticle-in-Alloy’ approach to efficient thermoelectrics: silicides in SiGe. Nano Letters 9, 711–715 (2009).

    Article  CAS  Google Scholar 

  32. He, J. Q., Girard, S. N., Kanatzidis, M. G. & Dravid, V. P. Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric material. Adv. Fun. Mater 20, 764–772 (2010).

    Article  CAS  Google Scholar 

  33. Wood, C. Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51, 459–539 (1988).

    Article  CAS  Google Scholar 

  34. Snyder, G. J., Christensen, M., Nishibori, E., Caillat, T. & Iversen, B. B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nature Mater. 3, 458–463 (2004).

    Article  CAS  Google Scholar 

Download references


This work was supported by the Office of Naval Research (grant N00014-08-1-0613). Transmission electron microscopy work was performed in the (EPIC) (NIFTI) (Keck-II) facility of NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. The work at the University of Michigan is supported as part of the Revolutionary Materials for Solid State Energy Conversion, an Energy frontier Research Center funded by the U. S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001054.

Author information

Authors and Affiliations



K.B., Q.Z. and M.G.K. prepared the samples, designed and carried out thermoelectric experiments. K.B. and M.G.K. analysed the electrical and thermal transport data. J.H. and V.P.D. carried out the TEM experiment and analysed the TEM data. G.W. and C.U. carried out the Hall measurements. K.B., J.H., V.P.D. and M.G.K. wrote the manuscript. All authors have reviewed, discussed and approved the results and conclusions of this article.

Corresponding author

Correspondence to Mercouri G. Kanatzidis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1492 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biswas, K., He, J., Zhang, Q. et al. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nature Chem 3, 160–166 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing