Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visible-light-mediated conversion of alcohols to halides

Abstract

The development of new means of activating molecules and bonds for chemical reactions is a fundamental objective for chemists. In this regard, visible-light photoredox catalysis has emerged as a powerful technique for chemoselective activation of chemical bonds under mild reaction conditions. Here, we report a visible-light-mediated photocatalytic alcohol activation, which we use to convert alcohols to the corresponding bromides and iodides in good yields, with exceptional functional group tolerance. In this fundamentally useful reaction, the design and operation of the process is simple, the reaction is highly efficient, and the formation of stoichiometric waste products is minimized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphine-free halogenation of alcohols using visible-light photoredox catalysis.
Figure 2: Ru(bpy)3Cl2 catalysed bromination of alcohol 1a.
Figure 3: Mechanistic investigation of the photocatalytic halogenation.
Figure 4: Degenerate SN2 reaction results in racemization with optically enriched alcohol 11.

Similar content being viewed by others

References

  1. Yoon, T. P., Ischay, M. A. & Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nature Chem. 2, 527–532 (2010).

    CAS  Google Scholar 

  2. Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. doi:10.1039/b913880n (2010).

  3. Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 108, 1052–1103 (2008).

    CAS  PubMed  Google Scholar 

  4. Fagnoni, M., Dondi, D., Ravelli, D. & Albini, A. Photocatalysis for the formation of the C–C bond. Chem. Rev. 107, 2725–2756 (2007).

    CAS  PubMed  Google Scholar 

  5. Juris, A. et al. Ruthenium(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev. 84, 85–277 (1988).

    CAS  Google Scholar 

  6. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ischay, M. A., Anzovino, M. E., Du, J. & Yoon, T. P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 130, 12886–12887 (2008).

    CAS  PubMed  Google Scholar 

  8. Nicolaou, K. C. & Snyder, S. A. The essence of total synthesis. Proc. Natl Acad. Sci. USA 101, 11929–11936 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis in complex target synthesis. Proc. Natl Acad. Sci. USA 101, 5368–5373 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Beeler, A. B., Su, S., Singleton, C. A. & Porco, J. A. Jr. Discovery of chemical reactions through multidimensional screening. J. Am. Chem. Soc. 129, 1413–1419 (2007).

    CAS  PubMed  Google Scholar 

  11. Beeson, T. D., Mastracchio, A., Hong, J–B., Ashton, K. & Macmillan, D. W. C. Enantioselective organocatalysis using SOMO activation. Science 316, 582–585 (2007).

    CAS  PubMed  Google Scholar 

  12. Doyle, A. G. & Jacobsen, E. N. Small–molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    CAS  PubMed  Google Scholar 

  13. Zhang, Z. & Schreiner, P. R. (Thio)urea organocatalysis—what can be learnt from anion recognition? Chem. Soc. Rev. 38, 1187–1198 (2009).

    CAS  PubMed  Google Scholar 

  14. Witham, C. A. et al. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chem. 2, 36–41 (2010).

    CAS  Google Scholar 

  15. Cong, H., Becker, C. F., Elliott, S. J., Grinstaff, M. W. & Porco, J. A. Jr. Silver nanoparticle-catalyzed Diels–Alder cycloadditions of 2′-hydroxychalcones. J. Am. Chem. Soc. 132, 7514–7518 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Young, I. S. & Baran, P. S. Protecting group-free synthesis as an opportunity for invention. Nature Chem. 1, 193–205 (2009).

    CAS  Google Scholar 

  17. Burns, N. Z., Baran, P. S. & Hoffmann, R. W. Redox economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

    CAS  Google Scholar 

  18. Newhouse, T., Baran, P. S. & Hoffmann, R. W. The economies of synthesis. Chem. Soc. Rev. 38, 3010–3021 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagib, D. A., Scott, M. E. & MacMillan, D. W. C. Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 131, 10875–10877 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Du, J. & Yoon, T. P. Crossed intermolecular [2+2] cycloadditions of acyclic enones via visible light photocatalysis. J. Am. Chem. Soc. 131, 14604–14605 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 131, 8756–8757 (2009).

    CAS  PubMed  Google Scholar 

  22. Tucker, J. W., Narayanam, J. M. R., Krabbe, S. W. & Stephenson, C. R. J. Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org. Lett. 12, 368–371 (2010).

    CAS  PubMed  Google Scholar 

  23. Tucker, J. W., Nguyen, J. D., Narayanam, J. M. R., Krabbe, S. W. & Stephenson, C. R. J. Tin-free radical cyclization reactions initiated by visible light photoredox catalysis. Chem. Commun. 46, 4985–4987 (2010).

    CAS  Google Scholar 

  24. Furst, L., Matsuura, B. S., Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Visible light-mediated intermolecular C–H functionalization of electron-rich heterocycles with malonates. Org. Lett. 12, 3104–3107 (2010).

    CAS  PubMed  Google Scholar 

  25. Condie, A. G., Gonzalez–Gomez, J. C. & Stephenson, C. R. J. Visible-light photoredox catalysis: aza–Henry reactions via C–H functionalization. J. Am. Chem. Soc. 132, 1464–1465 (2010).

    CAS  PubMed  Google Scholar 

  26. Larock, R. C. Comprehensive Organic Transformations 2nd edn, 689 (John Wiley & Sons, 1999).

  27. Weiss, R. G. & Snyder, E. I. Stereochemistry of chloride formation from alcohols and thiols by use of triphenylphosphine and carbon tetrachloride. J. Chem. Soc. Chem. Commun. 21, 1358–1359 (1968).

    Google Scholar 

  28. Weiss, R. G. & Snyder, E. I. Stereochemistry of displacement reactions at the neopentyl carbon. Further observations on the triphenylphosphine–polyhalomethane–alcohol reaction. J. Org. Chem. 36, 403–406 (1972).

    Google Scholar 

  29. Fujisawa, T., Iida, S. & Sato, T. A convenient method for the transformation of alcohols to alkyl chlorides using N,N-diphenylchlorophenylmethyleniminium chloride. Chem. Lett. 13, 1173–1174 (1984).

    Google Scholar 

  30. Mukaiyama, T., Shoda, S.-I. & Watanabe, Y. A new synthetic method for the transformation of alcohols to alkyl chlorides using 2-chlorobenzoxazolium salt. Chem. Lett. 4, 383–386 (1977).

    Google Scholar 

  31. Benazza, T., Uzan, R., Beaupere, D. & Demailly, G. Direct regioselective chlorination of unprotected hexitols and pentitols by Vilsmeier and Haack's salt. Tetrahedron Lett. 33, 4901–4904 (1992).

    CAS  Google Scholar 

  32. Benazza, T., Uzan, R., Beaupere, D. & Demailly, G. Direct regioselective chlorination of unprotected hexitols and pentitols by Viehe's Salt. Tetrahedron Lett. 33, 3129–3132 (1992).

    CAS  Google Scholar 

  33. Kelly, B. D. & Lambert, T. H. Aromatic cation activation of alcohols: conversion to alkyl chlorides using dichlorodiphenylcyclopropene. J. Am. Chem. Soc. 131, 13930–13931 (2009).

    CAS  PubMed  Google Scholar 

  34. Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    CAS  PubMed  Google Scholar 

  35. Arstad, E., Barrett, A. G. M., Hopkins, B. T. & Kobberling, J. ROMPgel-supported triphenylphosphine with potential application in parallel synthesis. Org. Lett. 4, 1975–1977 (2002).

    PubMed  Google Scholar 

  36. Li, C.-J. & Trost, B. M. Green chemistry for chemical synthesis. Proc. Natl Acad. Sci. USA 105, 13197–13202 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Canoyelo, H. & Deronzier, A. Photo-oxidation of tris(2,2′-bipyridine)ruthenium(II) by para-substituted benzene diazonium salts in acetonitrile. Two-compartment photoelectrochemical cell applications. J. Chem. Soc. Faraday Trans. I 80, 3011–3019 (1984).

    CAS  Google Scholar 

  38. Canoyelo, H. & Deronzier, A. Photo-oxidation of some carbinols by the Ru(II) polypyridyl complex–aryl diazonium salt system. Tetrahedron Lett. 25, 5517–5520 (1984).

    CAS  Google Scholar 

  39. Zen, J. M., Liou, S. L., Kumar, A. S. & Hsia, M. S. An efficient and selective photocatalytic system for the oxidation of sulfides to sulfoxides. Angew. Chem. Int. Ed. 42, 577–579 (2003).

    CAS  Google Scholar 

  40. Ischay, M. A., Lu, Z. & Yoon, T. P. [2+2] Cycloadditions by oxidative visible light photocatalysis. J. Am. Chem. Soc. 132, 8572–8574 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Léonel, E., Paugam, J. P. & Nédélec, J.-Y. A new preparative route to organic halides from alcohols via the reduction of polyhalomethanes. J. Org. Chem. 62, 7061–7064 (1997).

    Google Scholar 

  42. Fukui, K., Morokuma, K., Kato, H. & Yonezawa, T. The polarographic reduction and electronic structures of organic halides. Bull. Chem. Soc. Jpn 36, 217–222 (1963).

    CAS  Google Scholar 

  43. Léonel, E., Lejaye, M., Oudeyer, S., Paugam, J. P. & Nédélec, J.-Y. gem-Dihalocyclopropane formation by iron/copper activation of tetrahalomethanes in the presence of nucleophilic olefins. Evidence for a carbene pathway. Tetrahedron Lett. 45, 2635–2638 (2004).

    Google Scholar 

  44. Kharasch, M. S., Jensen, E. V. & Urry, W. H. Addition of carbon tetrabromide and bromoform to olefins. J. Am. Chem. Soc. 68, 154–155 (1946).

    CAS  Google Scholar 

  45. Hepburn, D. R. & Hudson, H. R. Factors in the formation of isomerically and optically pure alkyl halides. Part XI. Vilsmeier reagents for the replacement of a hydroxy-group by chlorine or bromine. J. Chem. Soc. Perkin Trans. I, 754–757 (1976).

Download references

Acknowledgements

This work was supported by the donors of the American Chemical Society Petroleum Research Fund (48479-G1) and Boston University. Nuclear magnetic resonance (CHE-0619339) and mass spectrometry (CHE-0443618) facilities at Boston University are supported by the National Science Foundation. The authors are grateful to A. Phillips, J. Porco and P. Wipf for helpful suggestions regarding this manuscript, and to F. Meschini for preliminary studies.

Author information

Authors and Affiliations

Authors

Contributions

C.D. performed the experiments. All authors conceived and designed the experiments, analysed the data, contributed to discussions and wrote the manuscript.

Corresponding author

Correspondence to Corey R. J. Stephenson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2036 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, C., Narayanam, J. & Stephenson, C. Visible-light-mediated conversion of alcohols to halides. Nature Chem 3, 140–145 (2011). https://doi.org/10.1038/nchem.949

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing