Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interrogating viral capsid assembly with ion mobility–mass spectrometry

An Erratum to this article was published on 23 July 2014

This article has been updated

Abstract

Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mass spectra of capsid intermediates.
Figure 2: Experimental and theoretical collision cross-section (Ω) values of capsid protein oligomers.
Figure 3: Ion mobility data for selected HBV oligomers.
Figure 4: Capsid symmetry of HBV and norovirus.
Figure 5: HBV and norovirus capsid protein under non-assembly conditions.

Similar content being viewed by others

Change history

  • 23 July 2014

    In the version of this Article originally published, the trace for cp4 was missing from Fig. 3a. This has now been corrected in the online versions of the Article.

References

  1. Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998).

    CAS  PubMed  Google Scholar 

  2. Robinson, C. V., Sali, A. & Baumeister, W. The molecular sociology of the cell. Nature 450, 973–982 (2007).

    CAS  PubMed  Google Scholar 

  3. van Duijn, E., Barendregt, A., Synowsky, S., Versluis, C. & Heck, A. J. Chaperonin complexes monitored by ion mobility mass spectrometry. J. Am. Chem. Soc. 131, 1452–1459 (2009).

    CAS  PubMed  Google Scholar 

  4. Sykes, M. T. & Williamson, J. R. A complex assembly landscape for the 30S ribosomal subunit. Annu. Rev. Biophys. 38, 197–215 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Besche, H. C., Peth, A. & Goldberg, A. L. Getting to first base in proteasome assembly. Cell 138, 25–28 (2009).

    CAS  PubMed  Google Scholar 

  6. Sharon, M., Witt, S., Glasmacher, E., Baumeister, W. & Robinson, C. V. Mass spectrometry reveals the missing links in the assembly pathway of the bacterial 20 S proteasome. J. Biol. Chem. 282, 18448–18457 (2007).

    CAS  PubMed  Google Scholar 

  7. Caspar, D. L. & Klug, A. Physical principles in the construction of regular viruses. Cold. Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    CAS  PubMed  Google Scholar 

  8. Zlotnick, A. Theoretical aspects of virus capsid assembly. J. Mol. Recogn. 18, 479–490 (2005).

    CAS  Google Scholar 

  9. Stockley, P. G. et al. A simple, RNA-mediated allosteric switch controls the pathway to formation of a T=3 viral capsid. J. Mol. Biol. 369, 541–552 (2007).

    CAS  PubMed  Google Scholar 

  10. Prasad, B. V. et al. X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287–290 (1999).

    CAS  PubMed  Google Scholar 

  11. Zlotnick, A., Johnson, J. M., Wingfield, P. W., Stahl, S. J. & Endres, D. A theoretical model successfully identifies features of hepatitis B virus capsid assembly. Biochemistry 38, 14644–14652 (1999).

    CAS  PubMed  Google Scholar 

  12. Glass, R. I., Parashar, U. D. & Estes, M. K. Norovirus gastroenteritis. N. Engl. J. Med. 361, 1776–1785 (2009).

    CAS  PubMed  Google Scholar 

  13. Sarin, S. K. et al. Consensus on extra-hepatic portal vein obstruction. Liver Int. 26, 512–519 (2006).

    PubMed  Google Scholar 

  14. Prasad, B. V., Hardy, M. E., Jiang, X. & Estes, M. K. Structure of Norwalk virus. Arch. Virol. 12(Suppl.), 237–242 (1996).

    Google Scholar 

  15. Wynne, S. A., Crowther, R. A. & Leslie, A. G. The crystal structure of the human hepatitis B virus capsid. Mol. Cell. 3, 771–780 (1999).

    CAS  PubMed  Google Scholar 

  16. Crowther, R. A. et al. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 77, 943–950 (1994).

    CAS  PubMed  Google Scholar 

  17. Hutson, A. M., Atmar, R. L., Marcus, D. M. & Estes, M. K. Norwalk virus-like particle hemagglutination by binding to H histo-blood broup antigens. J. Virol. 77, 405–415 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Steven, A. C. et al. Structure, assembly, and antigenicity of hepatitis B virus capsid proteins. Adv. Virus Res. 64, 125–164 (2005).

    CAS  PubMed  Google Scholar 

  19. Zlotnick, A. et al. Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry 35, 7412–7421 (1996).

    CAS  PubMed  Google Scholar 

  20. Uetrecht, C. et al. High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl Acad. Sci. USA 105, 9216–9220 (2008).

    CAS  PubMed  Google Scholar 

  21. Dryden, K. A. et al. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol. Cell. 22, 843–850 (2006).

    CAS  PubMed  Google Scholar 

  22. Duda, R. L., Martincic, K., Xie, Z. & Hendrix, R. W. Bacteriophage HK97 head assembly. FEMS Microbiol. Rev. 17, 41–46 (1995).

    CAS  PubMed  Google Scholar 

  23. Ceres, P. & Zlotnick, A. Weak protein–protein interactions are sufficient to drive assembly of hepatitis B virus capsids. Biochemistry 41, 11525–11531 (2002).

    CAS  PubMed  Google Scholar 

  24. Heck, A. J. Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods 5, 927–933 (2008).

    CAS  PubMed  Google Scholar 

  25. Morton, V. L., Stockley, P. G., Stonehouse, N. J. & Ashcroft, A. E. Insights into virus capsid assembly from non-covalent mass spectrometry. Mass Spectrom. Rev. 27, 575–595 (2008).

    PubMed  Google Scholar 

  26. Uetrecht, C. et al. Stability and shape of hepatitis B virus capsids in vacuo. Angew. Chem. Int. Ed. Engl. 47, 6247–6251 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shoemaker, G. K. et al. Norwalk virus assembly and stability monitored by mass spectrometry. Mol. Cell. Proteomics 9, 1742–1751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Uetrecht, C., Rose, R. J., Duijn, E. V., Lorenzen, K. & Heck, A. J. R. Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 39, 1633–1655 (2010).

    CAS  PubMed  Google Scholar 

  29. Lorenzen, K., Olia, A. S., Uetrecht, C., Cingolani, G. & Heck, A. J. Determination of stoichiometry and conformational changes in the first step of the P22 tail assembly. J. Mol. Biol. 379, 385–396 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruotolo, B. T. et al. Evidence for macromolecular protein rings in the absence of bulk water. Science 310, 1658–1661 (2005).

    CAS  PubMed  Google Scholar 

  31. Mesleh, M. F., Hunter, J. M., Shvartsburg, A. A., Schatz, G. C. & Jarrold, M. F. Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086 (1996).

    CAS  Google Scholar 

  32. Shvartsburg, A. A. & Jarrold, M. F. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996).

    CAS  Google Scholar 

  33. Derewenda, Z. S. The use of recombinant methods and molecular engineering in protein crystallization. Methods 34, 354–363 (2004).

    CAS  PubMed  Google Scholar 

  34. Jarrold, M. F. Peptides and proteins in the vapor phase. Annu. Rev. Phys. Chem. 51, 179–207 (2000).

    CAS  PubMed  Google Scholar 

  35. Packianathan, C., Katen, S. P., Dann, C. E. III & Zlotnick, A. Conformational changes in the hepatitis B virus core protein are consistent with a role for allostery in virus assembly. J. Virol. 84, 1607–1615 (2010).

    CAS  PubMed  Google Scholar 

  36. Hsu, C. et al. Characterization of polymorphism displayed by the coat protein mutants of tomato bushy stunt virus. Virology 349, 222–229 (2006).

    CAS  PubMed  Google Scholar 

  37. Dokland, T. Freedom and restraint: themes in virus capsid assembly. Structure 8, R157–R162 (2000).

    CAS  PubMed  Google Scholar 

  38. Hilmer, J. K., Zlotnick, A. & Bothner, B. Conformational equilibria and rates of localized motion within hepatitis B virus capsids. J. Mol. Biol. 375, 581–594 (2008).

    CAS  PubMed  Google Scholar 

  39. Parent, K. N., Suhanovsky, M. M. & Teschke, C. M. Phage P22 procapsids equilibrate with free coat protein subunits. J. Mol. Biol. 365, 513–522 (2007).

    CAS  PubMed  Google Scholar 

  40. Rabe, B. et al. Nuclear entry of hepatitis B virus capsids involves disintegration to protein dimers followed by nuclear reassociation to capsids. PLoS Pathog. 5, e1000563 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Zlotnick, A. Distinguishing reversible from irreversible virus capsid assembly. J. Mol. Biol. 366, 14–18 (2007).

    CAS  PubMed  Google Scholar 

  42. Pringle, S. D. et al. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261, 1–12 (2007).

    CAS  Google Scholar 

  43. van den Heuvel, R. H. et al. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 78, 7473–7483 (2006).

    CAS  PubMed  Google Scholar 

  44. van Duijn, E. et al. Tandem mass spectrometry of intact GroEL–substrate complexes reveals substrate-specific conformational changes in the trans ring. J. Am. Chem. Soc. 128, 4694–4702 (2006).

    CAS  PubMed  Google Scholar 

  45. Lorenzen, K., Versluis, C., van Duijn, E., van den Heuvel, R. H. H. & Heck, A. J. R. Optimizing macromolecular tandem mass spectrometry of large non-covalent complexes using heavy collision gases. Int. J. Mass Spectrom. 268, 198–206 (2007).

    CAS  Google Scholar 

  46. Sobott, F., Hernandez, H., McCammon, M. G., Tito, M. A. & Robinson, C. V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).

    CAS  PubMed  Google Scholar 

  47. Tahallah, N., Pinkse, M., Maier, C. S. & Heck, A. J. The effect of the source pressure on the abundance of ions of noncovalent protein assemblies in an electrospray ionization orthogonal time-of-flight instrument. Rapid Commun. Mass Spectrom. 15, 596–601 (2001).

    CAS  PubMed  Google Scholar 

  48. Jiang, X., Wang, M., Graham, D. Y. & Estes, M. K. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol. 66, 6527–6532 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wingfield, P. T., Stahl, S. J., Williams, R. W. & Steven, A. C. Hepatitis core antigen produced in Escherichia coli: subunit composition, conformational analysis, and in vitro capsid assembly. Biochemistry 34, 4919–4932 (1995).

    CAS  PubMed  Google Scholar 

  50. Ruotolo, B. T., Benesch, J. L., Sandercock, A. M., Hyung, S. J. & Robinson, C. V. Ion mobility–mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008).

    CAS  PubMed  Google Scholar 

  51. Smith, D. P. et al. Deciphering drift time measurements from travelling wave ion mobility spectrometry–mass spectrometry studies. Eur. J. Mass Spectrom. 15, 113–130 (2009).

    CAS  Google Scholar 

  52. Roos, W. H. et al. Squeezing protein shells: how continuum elastic models, molecular dynamics simulations and experiments coalesce at the nanoscale. Biophys. J. 99, 1175–1181 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their collaborators—N.R. Watts, P.T. Wingfield, A.C. Steven, S.E. Crawford, M.K. Estes and B.V. Venkataram Prasad—for providing the viral capsid proteins and helpful discussions. This work was supported by the Netherlands Proteomics Centre, the Natural Sciences and Engineering Research Council through a post-doctoral fellowship grant (to G.K.S.), and by the Netherlands Organisation for Scientific Research (NWO), a VENI (700.58.402) to E.v.D., and an ALW-ECHO (819.02.10) to A.J.R.H. Correspondence and requests for materials should be addressed to A.J.R.H.

Author information

Authors and Affiliations

Authors

Contributions

A.J.R.H. and E.v.D. conceived the research. C.U. and G.K.S. conducted the research. I.M.B. performed computational modelling. C.U. analysed the data. C.U. and A.J.R.H. wrote the paper.

Corresponding author

Correspondence to Albert J. R. Heck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uetrecht, C., Barbu, I., Shoemaker, G. et al. Interrogating viral capsid assembly with ion mobility–mass spectrometry. Nature Chem 3, 126–132 (2011). https://doi.org/10.1038/nchem.947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing