Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Guest-induced growth of a surface-based supramolecular bilayer


Self-assembly of planar molecules on a surface can result in the formation of a wide variety of close-packed or porous structures. Two-dimensional porous arrays provide host sites for trapping guest species of suitable size. Here we show that a non-planar guest species (C60) can play a more complex role by promoting the growth of a second layer of host molecules (p-terphenyl-3,5,3″,5″-tetracarboxylic acid) above and parallel to the surface so that self-assembly is extended into the third dimension. The addition of guest molecules and the formation of the second layer are co-dependent. Adding a planar guest (coronene) can displace the C60 and cause reversion to a monolayer arrangement. The system provides an example of a reversible transformation between a planar and a non-planar supramolecular network, an important step towards the controlled self-assembly of functional, three-dimensional, surface-based supramolecular architectures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Molecular structure of TPTC single-layer network.
Figure 2: Growth of the TPTC–C60 bilayer.
Figure 3: Structure of TPTC–C60 bilayer.
Figure 4: Reversal of bilayer formation by the addition of coronene.


  1. Bartels, L. Tailoring molecular layers at metal surfaces. Nature Chem. 2, 87–95 (2010).

    Article  CAS  Google Scholar 

  2. Elemans, J. A. A. W., Lei, S. B. & De Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).

    Article  CAS  Google Scholar 

  3. Barth, J., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  CAS  Google Scholar 

  4. Adisoejoso, J. et al. Two-dimensional crystal engineering: a four-component architecture at a liquid–solid interface. Angew. Chem. Int. Ed. 48, 7353–7357 (2009).

    Article  CAS  Google Scholar 

  5. Chen, W. et al. Two-dimensional pentacene: 3,4,9,10-perylenetetracarboxylic dianhydride supramolecular chiral networks on Ag(111). J. Am. Chem. Soc. 130, 12285–12289 (2008).

    Article  CAS  Google Scholar 

  6. Blunt, M. O. et al. Random tiling and topological defects in a two-dimensional molecular network. Science 322, 1077–1081 (2008).

    Article  CAS  Google Scholar 

  7. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    Article  CAS  Google Scholar 

  8. Stepanow, S. et al. Surface-assisted assembly of 2D metal–organic networks that exhibit unusual threefold coordination symmetry. Angew. Chem. Int. Ed. 46, 710–713 (2007).

    Article  CAS  Google Scholar 

  9. Tahara, K. et al. Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. J. Am. Chem. Soc. 128, 16613–16625 (2006).

    Article  CAS  Google Scholar 

  10. Griessl, S. J. H. et al. Room-temperature scanning tunneling microscopy manipulation of single C60 molecules at the liquid–solid interface: playing nanosoccer. J. Phys. Chem. B 26, 11556–11560 (2004).

    Article  Google Scholar 

  11. Madueno, R., Raisanen, M. T., Silien, C. & Buck, M. Functionalising hydrogen-bonded surface networks with self-assembled monolayers. Nature 454, 618–621 (2008).

    Article  CAS  Google Scholar 

  12. Ivasenko, O. et al. Supramolecular assembly of heterocirculenes in 2D and 3D. Chem. Commun. 1192–1194 (2009).

  13. Schull, G. et al. Selectivity of single-molecule dynamics in 2D molecular sieves. Adv. Mater. 18, 2954–2957 (2006).

    Article  CAS  Google Scholar 

  14. Wahl, M., Stohr, M., Spillmann, H., Jung, T. A. & Gade, L. H. Rotation–libration in a hierarchic supramolecular rotor–stator system: Arrhenius activation and retardation by local interaction. Chem. Commun. 1349–1351 (2007).

  15. Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).

    Article  CAS  Google Scholar 

  16. Wu, D., Deng, K., He, M., Zeng, Q. & Wang, C. Coadsorption-induced reconstruction of supramolecular assembly characteristics. ChemPhysChem 8, 1519–1523 (2007).

    Article  CAS  Google Scholar 

  17. Blunt, M. et al. Directing two-dimensional molecular crystallisation using guest templates. Chem. Commun. 2304–2306 (2008).

  18. Li, M. et al. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid–solid interface. Angew. Chem. Int. Ed. 120, 6819–6823 (2008).

    Article  Google Scholar 

  19. Zhou, H. et al. Frustrated 2D molecular crystallization. J. Am. Chem. Soc. 129, 13774–13775 (2007).

    Article  CAS  Google Scholar 

  20. Keeling, D. L., Humphry, M. J., Moriarty, P. & Beton, P. H. Attractive mode manipulation of covalently bound molecules. Chem. Phys. Lett. 366, 300–304 (2002).

    Article  CAS  Google Scholar 

  21. Samorì, P., Severin, N., Simpson, C. D., Müllen, K. & Rabe, J. P. Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 124, 9454–9457 (2002).

    Article  Google Scholar 

  22. Griessl, S. J. H. et al. Incorporation and manipulation of coronene in an organic template structure. Langmuir 20, 9403–9407 (2004).

    Article  CAS  Google Scholar 

Download references


We thank the UK Engineering and Physical Sciences Research Council for financial support under grant EP/D048761/1. M.S. thanks the European Research Council for an Advanced Grant. N.R.C. acknowledges the receipt of a Royal Society Leverhulme Trust Senior Fellowship.

Author information

Authors and Affiliations



M.O.B. and J.C.R. acquired the STM data, M.O.B. performed the MD simulations, M.C.G, X.L., M.S. and N.R.C. developed the synthetic route for the TPTC molecule, M.O.B. and P.H.B. analysed the data, M.O.B., N.R.C. and P.H.B. conceived and coordinated the experimental work and M.O.B., N.R.C. and P.H.B. co-wrote the paper.

Corresponding authors

Correspondence to Neil R. Champness or Peter H. Beton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1185 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blunt, M., Russell, J., Gimenez-Lopez, M. et al. Guest-induced growth of a surface-based supramolecular bilayer. Nature Chem 3, 74–78 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing