Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coexistence of superconductivity and magnetism by chemical design

Abstract

Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of superconductivity and magnetism in [Ni0.66Al0.33(OH)2][TaS2] at 4 K. The method is further demonstrated in the isostructural [Ni0.66Fe0.33(OH)2][TaS2], in which the magnetic ordering is shifted from 4 K to 16 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the layered components and the restacked material.
Figure 2: Magnetic susceptibility (a.c.) measured in the 2–7 K interval with an applied field of 3.95 G.
Figure 4: Magnetic susceptibility (a.c.) at 1 (black), 10 (red), 100 (blue) and 1,000 Hz (green) measured in the 2–20 K interval with an applied field of 3.95 G.
Figure 3: Muon spin rotation and fitted parameters.

Similar content being viewed by others

References

  1. Kopp, A., Ghosal, A. & Chakravarty, S. Competing ferromagnetism in high-temperature copper oxide superconductors. Proc. Natl Acad. Sci. USA 104, 6123–6127 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 . Nature 440, 65–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. De la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1–xFxFeAs systems. Nature 453, 899–902 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Drew, A. J. et al. Coexistence of static magnetism and superconductivity in SmFeAsO1–xFx as revealed by muon spin rotation. Nat. Mater. 8, 310–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Slooten, E., Naka, T., Gasparini, A., Huang, Y. K. & de Visser, A. Enhancement of superconductivity near the ferromagnetic quantum critical point in UCoGe. Phys. Rev. Lett. 103, 097003 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Aoki, D. et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature 413, 613–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Homma, H., Chun, C. S. L., Zheng, G.-G. & Schuller, I. K. Interaction of superconductivity and itinerant-electron magnetism: critical fields of Ni/V superlattices. Phys. Rev. B 33, 3562–3565 (1986).

    Article  CAS  Google Scholar 

  8. Ott, H. R., Fertig, W. A., Johnston, D. C., Maple, M. B. & Matthias, B. T. Superconducting and magnetic properties of ErRh4B4 . J. Low Temp. Phys. 33, 159–174 (1976).

    Article  Google Scholar 

  9. Goldman, A. M., Vasko, V., Kraus, P., Nikolaev, K. & Larkin, V. A. Cuprate/manganite heterostructures. J. Magn. Magn. Mater. 200, 69–82 (1999).

    Article  CAS  Google Scholar 

  10. Mühge, Th. et al. Possible origin for oscillatory superconducting transition temperature in superconductor/ferromagnet multilayers. Phys. Rev. Lett. 77, 1857–1860 (1996).

    Article  PubMed  Google Scholar 

  11. Martin, L., Turner, S. S., Day, P., Mabbsband, F. E. & McInnes, E. J. L. New molecular superconductor containing paramagnetic chromium (III) ions. Chem. Commun. 1367–1368 (1997).

  12. Ojima, E., Fujiwara, H., Kato, K. & Kobayashi, H. Antiferromagnetic organic metal exhibiting superconducting transition, K-(BETS)2FeBr4 [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Am. Chem. Soc. 121, 5581–5582 (1999).

    Article  CAS  Google Scholar 

  13. Coronado, E., Galán-Mascarós, J. R., Gómez-García, C. J. & Lauhkin, V. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408, 447–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Li, L. et al. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials. J. Am. Chem. Soc. 129, 8000–8007 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. DiSalvo, F. J., Hull, G. W., Schwartz, L. H., Voorhoeve, J. M. & Wasczak, J. W. Metal intercalation compounds of TaS2: preparation and properties. J. Chem. Phys. 59, 1922–1929 (1973).

    Article  CAS  Google Scholar 

  16. Nazar, L. F. & Jacobson, A. J. Intercalation of large cluster cations in TaS2 . J. Mater. Chem. 4, 1419–1425 (1994).

    Article  CAS  Google Scholar 

  17. Almansa, J. J., Coronado, E., Martí-Gastaldo, C. & Ribera, A. Magnetic properties of NiIICrIII layered double hydroxide materials. Eur. J. Inorg. Chem. 36, 5642–5648 (2008).

    Article  Google Scholar 

  18. Liu, Z. et al. Synthesis, anion exchange, and delamination of Co−Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128, 4872–4880 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Gamble, F. R. et al. Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174, 493–497 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Coleman, R. V., Eiserman, G. K., Hillenius, S. J., Mitchell, A. T. & Vicent, J. L. Dimensional crossover in the superconducting intercalated layer compounds 2H-TaS2 . Phys. Rev. B B27, 125–139 (1983).

    Article  Google Scholar 

  21. Sideris, P. J., Nielsen, U. G., Gan, Z. & Grey, C. P. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science 321, 113–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Gamble, F. R. & Thompson, A. H. Superconductivity in layer compounds intercalated with paramagnetic molecules. Solid State Commun. 27, 379–382 (1978).

    Article  CAS  Google Scholar 

  23. Coronado, E. et al. Spontaneous magnetization in Ni–Al and Ni–Fe layered double hydroxides. Inorg. Chem. 47, 9103–9110 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. DiSalvo, F. J., Schwall, R., Geballe, T. H., Gamble, F. R. & Osiecki, J. H. Superconductivity in layered compounds with variable interlayer spacings. Phys. Rev. Lett. 27, 310–313 (1971).

    Article  CAS  Google Scholar 

  25. Meyer, S. F., Howard, R. E., Stewart, G. R., Acrivos, J. V. & Geballe, T. H. Properties of intercalated 2H–NbSe2, 4Hb–TaS2 and 1T–TaS2 . J. Chem. Phys. 62, 4411–4419 (1975).

    Article  CAS  Google Scholar 

  26. Schlicht, A., Schwenker, M., Biberacher, W. & Lerf, A. Superconducting transition temperature of 2H–TaS2 intercalation compounds determined by the phonon spectrum. J. Phys. Chem. B 105, 4867–4871 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Union (MolSpinQIP and SPINMOL ERC Advanced Grant), the Spanish Ministerio de Ciencia e Innovación with FEDER co-financing (Project Consolider-Ingenio in Molecular Nanoscience, CSD2007-00010, and projects MAT2007-61584, CTQ-2008-06720, and NAN2004 09270C03-03) and the Generalitat Valenciana (Prometeo Program). The authors also acknowledge the G. Abellán, J.V. Usagre, J.M. Martínez-Agudo, T. Lancaster and F.L. Pratt for help with the experimental work.

Author information

Authors and Affiliations

Authors

Contributions

E.C. and C.M.G. conceived and designed the experiments, analysed the data, and prepared the manuscript with help from S.J.B. C.M.G., E.N.M. and A.R. performed the synthesis of the materials and carried out their characterization. P.J.B. and S.J.B. carried out and analysed the muon experiments.

Corresponding author

Correspondence to Eugenio Coronado.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coronado, E., Martí-Gastaldo, C., Navarro-Moratalla, E. et al. Coexistence of superconductivity and magnetism by chemical design. Nature Chem 2, 1031–1036 (2010). https://doi.org/10.1038/nchem.898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing