Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutual modulation between membrane-embedded receptor clustering and ligand binding in lipid membranes

Abstract

Thanks largely to a cooperative chelate effect, clustered membrane-embedded proteins favourably bind to multivalent ligands in solution and, conversely, a multivalent receptor can induce the clustering of membrane-embedded proteins. Here, we use a chemical model to show that the binding of a monovalent ligand and the clustering of a membrane-embedded receptor are closely related processes that modulate each other without the contribution of any apparent multivalence effect. Clearly, the confinement of the receptor within the surface reveals cooperative effects between clustering and binding that are too weak to detect in bulk-solution systems. This work shows that for membrane-embedded receptors that undergo some degree of spontaneous clustering, analyses based on multivalence-mediated cooperativity are insufficient to describe fully the molecular recognition events induced by ligands in solution. Instead, a binding–clustering thermodynamic cycle is proposed for the analysis of the interaction of any kind of ligand with membrane-embedded receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptor and ligands.
Figure 2: Evaluation of receptor clustering and ligand binding.
Figure 3: Incorporation of the receptor in the lipid membrane.
Figure 4: Clustering–binding relationship and ligand modulation of the receptor clustering landscape.

Similar content being viewed by others

References

  1. Luckey, M. Membrane Structural Biology (Cambridge Univ. Press, 2008).

    Book  Google Scholar 

  2. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  3. Renner, M., Specht, C. G. & Triller, A. Molecular dynamics of postsynaptic receptors and scaffold proteins. Curr. Opin. Neurobiol. 18, 532–540 (2008).

    Article  CAS  Google Scholar 

  4. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  5. Allen, J. A., Halverson-Tamboli, R. A. & Rasenick, M. M. Lipid raft microdomains and neurotransmitter signaling. Nature Rev. Neurosci. 8, 128–140 (2007).

    Article  CAS  Google Scholar 

  6. Tolar, P., Hanna, J., Krueger, P. D. & Pierce, S. K. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 30, 44–55 (2009).

    Article  CAS  Google Scholar 

  7. Munoz, P. et al. Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood 111, 3653–3664 (2008).

    Article  CAS  Google Scholar 

  8. Chichili, G. R. & Rodgers, W. Clustering of membrane raft proteins by the actin cytoskeleton. J. Biol. Chem. 282, 36682–36691 (2007).

    Article  CAS  Google Scholar 

  9. Wang, H. B., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397, 69–72 (1999).

    Article  CAS  Google Scholar 

  10. Oshovsky, G. V., Reinhoudt, D. N. & Verboom, W. Supramolecular chemistry in water. Angew. Chem. Int. Ed. 46, 2366–2393 (2007).

    Article  CAS  Google Scholar 

  11. Cockroft, S. L. & Hunter, C. A. Chemical double-mutant cycles: dissecting non-covalent interactions. Chem. Soc. Rev. 36, 172–188 (2007).

    Article  CAS  Google Scholar 

  12. Voskuhl, J. & Ravoo, B. J. Molecular recognition of bilayer vesicles. Chem. Soc. Rev. 38, 495–505 (2009).

    Article  CAS  Google Scholar 

  13. Zhang, J. B., Cao, H. H., Jing, B. W., Almeida, P. F. & Regen, S. L. Cholesterol–phospholipid association in fluid bilayers: a thermodynamic analysis from nearest-neighbor recognition measurements. Biophys. J. 91, 1402–1406 (2006).

    Article  CAS  Google Scholar 

  14. Regen, S. L. Lipid–lipid recognition in fluid bilayers: solving the cholesterol mystery. Curr. Opin. Chem. Biol. 6, 729–735 (2002).

    Article  CAS  Google Scholar 

  15. Doyle, E. L., Hunter, C. A., Phillips, H. C., Webb, S. J. & Williams, N. H. J. Am. Chem. Soc. 125, 4593–4599 (2003).

    Article  CAS  Google Scholar 

  16. Jiang, H. & Smith, B. D. Dynamic molecular recognition on the surface of vesicle membranes. Chem. Commun. 1407–1409 (2006).

  17. Thomas, G. B. et al. Carbohydrate modified catanionic vesicles: probing multivalent binding at the bilayer interface. J. Am. Chem. Soc. 131, 5471–5477 (2009).

    Article  CAS  Google Scholar 

  18. Gong, Y., Ma, M., Luo, Y. & Bong, D. Functional determinants of a synthetic vesicle fusion system. J. Am. Chem. Soc. 130, 6196–6205 (2008).

    Article  CAS  Google Scholar 

  19. Richard, A. et al. Fusogenic supramolecular vesicle systems induced by metal ion binding to amphiphilic ligands. Proc. Natl Acad. Sci. USA 101, 15279–15284 (2004).

    Article  CAS  Google Scholar 

  20. Menger, F. M., Seredyuk, V. A. & Yaroslavov, A. A. Adhesive and anti-adhesive agents in giant vesicles. Angew. Chem. Int. Ed. 41, 1350–1352 (2002).

    Article  CAS  Google Scholar 

  21. Mart, R. J., Liem, K. P., Wang, X. & Webb, S. J. The effect of receptor clustering on vesicle–vesicle adhesion. J. Am. Chem. Soc. 128, 14462–14463 (2006).

    Article  CAS  Google Scholar 

  22. Mansfeld, F. M., Feng, G. Q. & Otto, S. Photo-induced molecular-recognition-mediated adhesion of giant vesicles. Org. Biomol. Chem. 7, 4289–4295 (2009).

    Article  CAS  Google Scholar 

  23. Sanchez-Quesada, J., Isler, M. P. & Ghadiri, M. R. Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies. J. Am. Chem. Soc. 124, 10004–10005 (2002).

    Article  CAS  Google Scholar 

  24. Litvinchuk, S. et al. Synthetic pores with reactive signal amplifiers as artificial tongues. Nature Mater. 6, 576–580 (2007).

    Article  CAS  Google Scholar 

  25. Christian, D. A. et al. Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding. Nature Mater. 8, 843–849 (2009).

    Article  CAS  Google Scholar 

  26. Ludlow, R. F. & Otto, S. Systems chemistry. Chem. Soc. Rev. 37, 101–108 (2008).

    Article  CAS  Google Scholar 

  27. Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    Article  CAS  Google Scholar 

  28. Sasaki, D. Y., Waggoner, T. A., Last, J. A. & Alam, T. M. Crown ether functionalized lipid membranes: lead ion recognition and molecular reorganization. Langmuir 18, 3714–3721 (2002).

    Article  CAS  Google Scholar 

  29. Dijkstra, H. P. et al. Transmission of binding information across lipid bilayers. Chem. Eur. J. 13, 7215–7222 (2007).

    Article  CAS  Google Scholar 

  30. Lahiri, J., Fate, G. D., Ungashe, S. B. & Groves, J. T. Multi-heme self-assembly in phospholipid vesicles. J. Am. Chem. Soc. 118, 2347–2358 (1996).

    Article  CAS  Google Scholar 

  31. Tomas, S. & Milanesi, L. Hydrophobically self-assembled nanoparticles as molecular receptors in water. J. Am. Chem. Soc. 131, 6618–6623 (2009).

    Article  CAS  Google Scholar 

  32. Davidson, S. M. K. & Regen, S. L. Nearest-neighbor recognition in phospholipid membranes. Chem. Rev. 97, 1269–1279 (1997).

    Article  CAS  Google Scholar 

  33. Hunter, C. A. & Anderson, H. L. What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009).

    Article  CAS  Google Scholar 

  34. Gampp, H., Maeder, M., Meyer, C. J. & Zuberbuhler, A. D. Calculation of equilibrium-constants from multiwavelength spectroscopic data. 4: model-free least-squares refinement by use of evolving factor-analysis. Talanta 33, 943–951 (1986).

    Article  CAS  Google Scholar 

  35. Pasternak, R. F., Francesc, L., Raff, D. & Spiro, E. Aggregation of nickel(II), copper(II), and zinc(II) derivatives of water-soluble porphyrins. Inorg. Chem. 12, 2606–2611 (1973).

    Article  Google Scholar 

  36. Ribo, J. M., Crusats, J., Farrera, J. A. & Valero, M. L. Aggregation in water solutions of tetrasodium diprotonated meso-tetrakis(4-sulfonatophenyl) porphyrin. J. Chem. Soc. Chem. Commun. 681–682 (1994).

  37. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    Article  CAS  Google Scholar 

  38. Denisov, G., Wanaski, S., Luan, P., Glaser, M. & McLaughlin, S. Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: an electrostatic model and experimental results. Biophys. J. 74, 731–744 (1998).

    Article  CAS  Google Scholar 

  39. Boniface, J. J. et al. Initiation of signal transduction through the T cell receptor requires the peptide multivalent engagement of MHC ligands. Immunity 9, 459–466 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.C. Thompson, P.M. King, N.H. Williams and C.A. Hunter for reading the manuscript and the Faculty of Sciences at Birkbeck, University of London, for funding. TEM was performed at the School of Crystallography, Birkbeck University of London, supported by a Wellcome Trust programme grant to H. Saibil.

Author information

Authors and Affiliations

Authors

Contributions

S.T. planned the studies, performed the synthesis of 1, performed the optical spectroscopy and GPC experiments, interpreted the data and co-wrote the manuscript. L.M. performed the cryo-TEM experiments and co-wrote the manuscript.

Corresponding author

Correspondence to Salvador Tomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomas, S., Milanesi, L. Mutual modulation between membrane-embedded receptor clustering and ligand binding in lipid membranes. Nature Chem 2, 1077–1083 (2010). https://doi.org/10.1038/nchem.892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing