Reversing the direction in a light-driven rotary molecular motor

Abstract

Biological rotary motors can alter their mechanical function by changing the direction of rotary motion. Achieving a similar reversal of direction of rotation in artificial molecular motors presents a fundamental stereochemical challenge: how to change from clockwise to anticlockwise motion without compromising the autonomous unidirectional rotary behaviour of the system. A new molecular motor with multilevel control of rotary motion is reported here, in which the direction of light-powered rotation can be reversed by base-catalysed epimerization. The key steps are deprotonation and reprotonation of the photochemically generated less-stable isomers during the 360° unidirectional rotary cycle, with complete inversion of the configuration at the stereogenic centre. The ability to change directionality is an essential step towards mechanical molecular systems with adaptive functional behaviour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conceptual illustration of rotary motion in a molecular motor and the change from clockwise to anticlockwise rotation.
Figure 2: Design of a molecular motor for base-mediated epimerization.
Figure 3: Schematic representation of controlled clockwise and anticlockwise rotary cycles of molecular motor 1 using different triggers.
Figure 4: Synthesis of the reversible molecular motor 1.
Figure 5: Monitoring of photochemical and thermal behaviour of a reversible molecular motor.
Figure 6: Monitoring of the base-catalysed epimerization process.
Figure 7: Characterization of various stages of the full rotation cycle comprising photochemical, thermal and base-catalysed isomerization steps.

References

  1. 1

    Schliwa, M. Molecular Motors (Wiley-VCH, 2003).

    Google Scholar 

  2. 2

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Stoddart, J. F. Molecular machines. Acc. Chem. Res. 34, 410–411 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Jiménez, M. C., Dietrich-Buchecker, C. & Sauvage, J. P. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000).

    Article  Google Scholar 

  6. 6

    Feringa, B. L. The art of building small: from molecular switches to molecular motors. J. Org. Chem. 72, 6635–6652 (2007).

    CAS  Article  Google Scholar 

  7. 7

    De Rosier, D. J. The turn of the screw: the bacterial flagellar motor. Cell 93, 17–20 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Kinosita, K., Yasuda, R., Noji, H., Ishiwata, S. & Yoshida, M. F1-ATPase: a rotary motor made of a single molecule. Cell 93, 21–24 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets. Science 288, 95–99 (2000).

    CAS  Article  Google Scholar 

  11. 11

    van den Heuvel, M. G. L. & Dekker, C. Motor proteins at work for nanotechnology. Science 317, 333–336 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Sauvage, J.-P. & Dietrich-Buchecker, C. (eds.) Molecular Catenanes, Rotaxanes and Knots (Wiley-VCH, 1999).

    Google Scholar 

  14. 14

    Koumura, N., van Delden, R. A., ter Wiel, M. K. J. & Feringa, B. L. Light-driven molecular switches and motors. Appl. Phys. A 75, 301–308 (2002).

    Article  Google Scholar 

  15. 15

    van Delden, R. A., Koumura, N., Geertsema, E. M. & Feringa, B. L. Chiroptical molecular switches. Chem. Rev. 100, 1789–1816 (2000).

    Article  Google Scholar 

  16. 16

    Feringa, B. L. (ed.) Molecular Switches (Wiley-VCH, 2001).

    Google Scholar 

  17. 17

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Article  Google Scholar 

  19. 19

    Klok, M. et al. MHz unidirectional rotation of molecular rotary motors. J. Am. Chem. Soc. 130, 10484–10485 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Pollard, M. M., Philana, V. W., Pijper, D. & Feringa, B. L. On the effect of donor and acceptor substituents on the behaviour of light-driven rotary molecular motors. Org. Biomol. Chem. 6, 1605–1612 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Pollard, M. M., Meetsma, A. & Feringa, B. L. A redesign of light-driven rotary molecular motors. Org. Biomol. Chem. 6, 507–512 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Lin, Y., Dahl, B. J. & Branchaud, B. P. Net directed 180° aryl–aryl bond rotation in a prototypical achiral biaryl lactone synthetic molecular motor. Tetrahedron Lett. 46, 8359–8362 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Kelly, T. R., Silva, H. D. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  Google Scholar 

  27. 27

    Saha, S. et al. A redox-driven multicomponent molecular shuttle. J. Am. Chem. Soc. 129, 12159–12171 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Pollard, M. M., Klok, M., Pijper, D. & Feringa, B. L. Rate acceleration of light-driven rotary molecular motors. Adv. Funct. Mater. 17, 718–729 (2007).

    CAS  Article  Google Scholar 

  30. 30

    van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Pollard, M. M., Lubomska, M., Rudolf, P. & Feringa, B. L. Controlled rotary motion in a monolayer of molecular motors. Angew. Chem. Int. Ed. 46, 1278–1280 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Eelkema, R. et al. Rotational reorganization of doped cholesteric liquid crystalline films. J. Am. Chem. Soc. 128, 14397–14407 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Pijper, D, Jongejan, M. G. M., Meetsma, A. & Feringa, B. L. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch. J. Am. Chem. Soc. 130, 4541–4552 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 46, 3693–3696 (2007).

    CAS  Article  Google Scholar 

  36. 36

    van Delden, R. A., ter Wiel, M. K. J., de Jong, H., Meetsma, A. & Feringa, B. L. Exploring the boundaries of a light-driven molecular motor design: new sterically overcrowded alkenes with preferred direction of rotation. Org. Biomol. Chem. 2, 1531–1541 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Okubo, T., Yoshikawa, R., Chaki, S., Okuyama, S. & Nakazato, A. Design, synthesis, and structure–activity relationships of novel tetracyclic compounds as peripheral benzodiazepine receptor ligands. Bioorg. Med. Chem. 12, 3569–3580 (2004).

    CAS  Article  Google Scholar 

  38. 38

    McWatt, M. & Boons, G. J. Parallel combinatorial synthesis of glycodendrimers and their hydrogelation properties. Eur. J. Org. Chem. 2535–2545 (2001).

  39. 39

    Barton, D. H. R. & Willis, B. J. Olefin synthesis by two-fold extrusion processes. Part I preliminary experiments. J. Chem. Soc. Perkin Trans. 1 3, 305–310 (1972).

    Article  Google Scholar 

  40. 40

    Buter, J., Wassenaar, S. & Kellogg, R. M. Thiocarbonyl ylides: generation, properties, and reactions. J. Org. Chem. 37, 4045–4060 (1972).

    CAS  Article  Google Scholar 

  41. 41

    Paquette, L. A. Encyclopedia of Reagents for Organic Synthesis (Wiley, 1995) 6, 3982.

    Google Scholar 

  42. 42

    Geertsema, E. M., van der Molen, S. J., Martens, M & Feringa, B. L. Optimizing rotary processes in synthetic molecular motors. Proc. Natl Acad. Sci. USA 106, 16919–16924 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Netherlands Organization for Scientific Research, the Zernike Institute for Advanced Materials, the European Research Council (advanced grant no: 227897) and the University of Groningen for financial support.

Author information

Affiliations

Authors

Contributions

N.R. and M.M.P. carried out the experimental work. All the authors contributed to the design of the experiments, the analysis of the data and the writing of the paper.

Corresponding author

Correspondence to Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2075 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruangsupapichat, N., Pollard, M., Harutyunyan, S. et al. Reversing the direction in a light-driven rotary molecular motor. Nature Chem 3, 53–60 (2011). https://doi.org/10.1038/nchem.872

Download citation

Further reading