Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An efficient organocatalytic method for constructing biaryls through aromatic C–H activation

Abstract

The direct functionalization of C–H bonds has drawn the attention of chemists for almost a century. C–H activation has mainly been achieved through four metal-mediated pathways: oxidative addition, electrophilic substitution, σ-bond metathesis and metal-associated carbene/nitrene/oxo insertion. However, the identification of methods that do not require transition-metal catalysts is important because methods involving such catalysts are often expensive. Another advantage would be that the requirement to remove metallic impurities from products could be avoided, an important issue in the synthesis of pharmaceutical compounds. Here, we describe the identification of a cross-coupling between aryl iodides/bromides and the C–H bonds of arenes that is mediated solely by the presence of 1,10-phenanthroline as catalyst in the presence of KOt-Bu as a base. This apparently transition-metal-free process provides a new strategy with which to achieve direct C–H functionalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct aromatic C–H transformations.
Figure 2: Kinetic studies comparing the reaction profile with various added transition-metal catalysts.
Figure 3: Metal-free process in the intramolecular cross-coupling to prepare 6H-benzo[c]chromene.
Figure 4: Proposed interactions between the phenanthroline, base and substrate for this transition metal-free cross-coupling.

Similar content being viewed by others

References

  1. Jones, W. & Fehe, F. Comparative reactivities of hydrocarbon carbon–hydrogen bonds with a transition-metal complex. Acc. Chem. Res. 22, 91–100 (1989).

    Article  CAS  Google Scholar 

  2. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Dyker, G. (ed.) Handbook of C–H Transformations. Applications in Organic Synthesis (Wiley-VCH, 2005).

  4. Godula, K. & Sames, D. C–H bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Bergman, R. G. Organometallic chemistry: C–H activation. Nature 446, 391–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Sawyer, D. T., Sobkowiak, A. & Matsushita, T. Metal [MLx; M = Fe, Cu, Co, Mn]/hydroperoxide-induced activation of dioxygen for the oxygenation of hydrocarbons: oxygenated Fenton chemistry. Acc. Chem. Res. 29, 409–416 (1996).

    Article  CAS  Google Scholar 

  7. Walling, C. Intermediates in the reactions of Fenton type reagents. Acc. Chem. Res. 31, 155–157 (1998).

    Article  CAS  Google Scholar 

  8. MacFaul, P. A., Wayner, D. D. M. & Ingold, K. U. A radical account of ‘oxygenated Fenton chemistry’. Acc. Chem. Res. 31, 159–162 (1998).

    Article  CAS  Google Scholar 

  9. Goldstein, S. & Meyerstein, D. Comments on the mechanism of the ‘Fenton-like’ reaction. Acc. Chem. Res. 32, 547–550 (1999).

    Article  CAS  Google Scholar 

  10. Gore, P. H. The Friedel–Crafts acylation reaction and its application to polycyclic aromatic hydrocarbons. Chem. Rev. 55, 229–281 (1955).

    Article  CAS  Google Scholar 

  11. Olah, G. A. (ed.) Friedel-Crafts and Related Reactions (Wiley, 1964).

  12. Shilov, A. E. & Shul'pin, G. B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes (Kluwer, 2000).

  13. Davies, H. M. L. & Beckwith, R. E. J. Catalytic enantioselective C–H activation by means of metal-carbenoid-induced C–H insertion. Chem. Rev. 103, 2861–2904 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Díaz-Requejo, M. M. & Pérez, P. J. Coinage metal catalyzed C–H bond functionalization of hydrocarbons. Chem. Rev. 108, 3379–3394 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Chem. Rev. 110, 704–724 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Alberico, D., Scott, M. E. & Lautens, M. Chem. Rev. 107, 174–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. McGlacken, G. P. & Bateman, L. M. Recent advances in aryl–aryl bond formation by direct arylation. Chem. Soc. Rev. 38, 2447–2464 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Ackermann, L., Vicente, R. & Kapdi, A. R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C–H bond cleavage. Angew. Chem. Int. Ed. 48, 9792–9826 (2009).

    Article  CAS  Google Scholar 

  19. Shilov, A. E. & Shul'pin, G. B. Activation of C–H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Jia, C. et al. Efficient activation of aromatic C–H bonds for addition to C–C multiple bonds. Science 287, 1992–1995 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    Article  CAS  Google Scholar 

  22. Brennführer, A., Neumann, H. & Beller, M. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew. Chem. Int. Ed. 48, 4114–4118 (2009).

    Article  CAS  Google Scholar 

  23. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ritleng, V., Sirlin, C. & Pfeffer, M. Ru-, Rh- and Pd-catalyzed C–C bond formation involving C–H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem. Rev. 102, 1731–1770 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Willis, M. C. Transition metal catalyzed alkene and alkyne hydroacylation. Chem. Rev. 110, 725–748 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Chin, C. S., Won, G., Chong, D., Kim, M. & Lee, H. Carbon–carbon bond formation involving reactions of alkynes with group 9 metals (Ir, Rh, Co): preparation of conjugated olefins. Acc. Chem. Res. 35, 218–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Trost, B. M., Toste, F. D. & Pinkerton, A. B. Non-metathesis ruthenium-catalyzed C–C bond formation. Chem. Rev. 101, 2067–2096 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Conejero, S., Paneque, M., Poveda, M. L., Santos, L. L. & Carmona, E. C–H bond activation reactions of ethers that generate iridium carbenes. Acc. Chem. Res. 43, 572–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Sun, C.-L., Li, B.-J. & Shi, Z.-J. Pd-catalyzed oxidative coupling with organometallic reagents via C–H activation. Chem. Commun. 46, 677–685 (2010).

    Article  CAS  Google Scholar 

  31. Fagnou, K. & Lautens, M. Rhodium-catalyzed carbon–carbon bond forming reactions of organometallic compounds. Chem. Rev. 103, 169–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Kuninobu, Y., Nishina, Y., Takeuchi, T. & Takai, K. Manganese-catalyzed insertion of aldehydes into a C–H bond. Angew. Chem. Int. Ed. 46, 6518–6520 (2007).

    Article  CAS  Google Scholar 

  33. Waltz, K. M. & Hartwig, J. F. Selective functionalization of alkanes by transition-metal boryl complexes. Science 277, 211–213 (1997).

    Article  CAS  Google Scholar 

  34. Chen, H., Schlecht, S., Semple, T. C. & Hartwig, J. F. Thermal, catalytic, regiospecific functionalization of alkanes. Science 287, 1995–1997 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. Jr & Smith, III, M. R. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Naota, T., Takaya, H. & Murahashi, S.-I. Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev. 98, 2599–2660 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Lersch, M. & Tilset, M. Mechanistic aspects of C–H activation by Pt complexes. Chem. Rev. 105, 2471–2526 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Z., Brouwer, C. & He, C. Gold-catalyzed organic transformations. Chem. Rev. 108, 3239–3265 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, X., Hao, X.-S., Goodhue, C. E. & Yu, J.-Q. Cu(II)-catalyzed functionalizations of aryl C–H bonds using O2 as an oxidant. J. Am. Chem. Soc. 128, 6790–6791 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Phipps, R. J., Grimster, N. P. & Gaunt, M. J. Cu(II)-catalyzed direct and site-selective arylation of indoles under mild conditions. J. Am. Chem. Soc. 130, 8172–8174 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Brasche, G. & Buchwald, S. L. C–H functionalization/C–N bond formation: copper-catalyzed synthesis of benzimidazoles from amidines. Angew. Chem. Int. Ed. 47, 1932–1934 (2008).

    Article  CAS  Google Scholar 

  42. Ueda, S. & Nagasawa, H. Synthesis of 2-arylbenzoxazoles by copper-catalyzed intramolecular oxidative C–O coupling of benzanilides. Angew. Chem. Int. Ed. 47, 6411–6413 (2008).

    Article  CAS  Google Scholar 

  43. Xu, L.-M., Li, B.-J., Yang, Z. & Shi, Z.-J. Organopalladium(IV) chemistry. Chem. Soc. Rev. 39, 712–733 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond arylation. Science 323, 1593–1597 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, W. et al. Organocatalysis in cross-coupling: DMEDA-catalyzed direct C–H arylation of unactivated benzene. J. Am. Chem. Soc. doi:ja103050x (2010).

  46. Vallée, F., Mousseau, J. J. & Charette, A. B. Iron-catalyzed direct arylation through an aryl radical transfer pathway. J. Am. Chem. Soc. 132, 1514–1516 (2010).

    Article  PubMed  CAS  Google Scholar 

  47. Liu, W., Cao, H. & Lei, A. Iron-catalyzed direct arylation of unactivated arenes with aryl halides. Angew. Chem. Int. Ed. 49, 2004–2008 (2010).

    Article  CAS  Google Scholar 

  48. Yanagisawa, S., Ueda, K., Taniguchi, T. & Itami, K. Potassium t-butoxide alone can promote the biaryl coupling of electron-deficient nitrogen heterocycles and haloarenes. Org. Lett. 10, 4673–4676 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Deng, G., Ueda, K., Yanagisawa, S., Itami, K. & Li, C.-J. Coupling of nitrogen heteroaromatics and alkanes without transition metals: a new oxidative cross-coupling at C–H/C–H bonds. Chem. Eur. J. 15, 333–337 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Kumpf, R. A. & Dougherty, D. A. A mechanism for ion selectivity in potassium channels: computational studies of cation–pi interactions. Science 261, 1708–1710 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for this work from NSFC (grant nos 20672006, 20821062, GZ419) and the ‘973’ Project from the MOST of China (2009CB825300). The authors also thank J. Zhang at East China Normal University and N. Jiao at the Medical School of Peking University and their students for repeating our experiments. The polishing of the English and the constructive comments from K. Itami at Nagoya University and C. He from the University of Chicago are greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Z.-J.S. conceived the project. C.-L.S., H.L. and D.-G.Y. performed the experiments and analysed the data and contributed equally to this work. M.Y., X.Z., X.-Y.L., K.H. and S.-F.Z. worked on product isolation and purification. C.-L.S., B.-J.L. and Z.-J.S. wrote the paper. C.-L.S. wrote the Supplementary Information and contributed other related materials.

Corresponding author

Correspondence to Zhang-Jie Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1817 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, CL., Li, H., Yu, DG. et al. An efficient organocatalytic method for constructing biaryls through aromatic C–H activation. Nature Chem 2, 1044–1049 (2010). https://doi.org/10.1038/nchem.862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing