Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts

Abstract

In enzymes, the electronic and steric environments of active centres, and therefore their activity in biological processes, are controlled by the surrounding amino acids. In a similar manner, organic ligands have been used for the ‘passivation’ of metal clusters, that is, inhibition of their aggregation and control of their environment. However, the ability of enzymes to maintain large degrees of accessibility has remained difficult to mimic in synthetic systems in which little room, if any, is typically left to bind to other species. Here, using calix[4]arene macrocycles bearing phosphines as crude mimics of the rigid backbones of proteins, we demonstrate the synthesis of gold clusters and the control of their accessibility through an interplay between the sizes of the calixarene ligands and metal cores. For 0.9-nm cores, 25% of all the gold atoms within the cluster bind to the chemisorption probe 2-naphthalenethiol. This accessibility dramatically decreases with 1.1-nm and 4-nm gold cores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of comparative synthetic approach adopted to control the accessibility of gold clusters through bulky calix[4]arene ligands.
Figure 2: Structure of molecular precursors, and images and particle size distributions of gold clusters.
Figure 3: Determination of gold cluster accessibility through the steady-state fluorescence of the 2NT probe molecule.

Similar content being viewed by others

References

  1. Beinert, H. Iron–sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem. 5, 2–15 (2000).

    Article  CAS  Google Scholar 

  2. Robbins, A. H. & Stout, C. D. Structure of activated aconitase: formation of the [4Fe-4S] cluster. Proc. Natl Acad. Sci. USA 86, 3639–3643 (1989).

    Article  CAS  Google Scholar 

  3. Quintanar, L. et al. Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation. J. Am. Chem. Soc. 127, 13832–13845 (2005).

    Article  CAS  Google Scholar 

  4. Banavar, J. R. & Maritan, A. Physics of proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 261–280 (2007).

    Article  CAS  Google Scholar 

  5. Xu, Z. et al. Size-dependent catalytic activity of supported metal clusters. Nature 372, 346–348 (1994).

    Article  CAS  Google Scholar 

  6. Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008).

    Article  CAS  Google Scholar 

  7. Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006).

    Article  Google Scholar 

  8. Choundhary, T. V. & Goodman, D. W. Oxidation catalysis by supported gold nano-clusters. Top. Catal. 21, 25–34 (2002).

    Article  Google Scholar 

  9. Corma, A. et al. Gold nanoparticles in organic capsules: a supramolecular assembly of gold nanoparticles and cucurbituril. Eur. J. Chem. 13, 6359–6364 (2007).

    Article  CAS  Google Scholar 

  10. Nowicki, A. et al. Supramolecular shuttle and protective agent: a multiple role of methylated cyclodextrins in the chemoselective hydrogenation of benzene derivatives with ruthenium nanoparticles. Chem. Commun. 3, 296–298 (2006).

    Article  Google Scholar 

  11. Denicourt-Nowicki, A., Ponchel, A., Monflier, E. & Roucoux, A. Methylated cyclodextrins: an efficient protective agent in water for zerovalent ruthenium nanoparticles and a supramolecular shuttle in alkene and arene hydrogenation reactions. Dalton Trans. 48, 5714–5719 (2007).

    Article  Google Scholar 

  12. Denicourt-Nowicki, A., Roucoux, A. & Wyrwalski, F. Carbon-supported ruthenium nanoparticles stabilized by methylated cyclodextrins: a new family of heterogeneous catalysts for the gas-phase hydrogenation of arenes. Eur. J. Chem. 14, 8090–8093 (2008).

    Article  CAS  Google Scholar 

  13. Gopidas, K. R., Whitesell, J. K. & Fox, M. A. Nanoparticle-cored dendrimers: synthesis and characterization. J. Am. Chem. Soc. 125, 6491–6502 (2003).

    Article  CAS  Google Scholar 

  14. Crooks, R. M., Zhao, M., Sun, L., Chechik, V. & Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

    Article  CAS  Google Scholar 

  15. Toshima, N. Nanoscopic structure and function of polymer-protected metal clusters. Macromol. Symp. 156, 45–52 (2000).

    Article  CAS  Google Scholar 

  16. Baiker, A. Progress in asymmetric heterogeneous catalysis: design of novel chirally modified platinum metal catalysts. J. Mol. Cat. A 115, 473–493 (1997).

    Article  CAS  Google Scholar 

  17. Ha, J.-M., Solovyov, A. & Katz, A. Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance. Langmuir 25, 153–158 (2009).

    Article  CAS  Google Scholar 

  18. Ha, J.-M., Solovyov, A. & Katz, A. Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles. Langmuir 25, 10548–10553 (2009).

    Article  CAS  Google Scholar 

  19. Xu, W., Puddephatt, R. J., Manojlovic-Muir, L., Muir, K. W. & Frampton, C. S. J. Calixarenes: structure of an acetonitrile inclusion complex and some transition metal rimmed derivatives. J. Incl. Phenom. 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  20. Dieleman, C. B., Matt, D. & Harriman, A. Coordination chemistry of calix-phosphanes: cooperativity in the assembly of a tetragold calixarene complex. Eur. J. Inorg. Chem. 831–834 (2000), and references therein.

  21. Ungaro, R., Pochini, A., Andreetti, G. D. & Domiano, P. Molecular inclusion in functionalized macrocycles: the crystal and molecular-structure of para-tert-butylcalix[4]arene anisole(2–1) complex—a new type of cage compound. J. Chem. Soc. Perkin Trans. II, 197–201 (1985).

  22. Bartlett, P. A., Bauer, B. & Singer, S. J. Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopies and other studies of biological systems. J. Am. Chem. Soc. 100, 5085–5089 (1978).

    Article  CAS  Google Scholar 

  23. Albano, V. G., Bellon, P. L., Manassero, M. & Sansoni, M. Intermetallic pattern in metal–atom clusters—structural studies on Au11X3(PR3)7 species. Chem. Commun. 1210–1211 (1970).

  24. Vollenbroek, F. A., Bour, J. J. & van der Velden, J. W. A. Gold–phopshine cluster compounds—the reactions of [A9L8]3+ (L=PPh3) with L, SCN and Cl TO [Au8L8]2+, [Au11L8(SCN)2]+ and [Au11L8Cl2]+. Rec. Trav. Chim. Pays-Bas 99, 137–141 (1980).

    Article  CAS  Google Scholar 

  25. Smith, J. M. M., Bour, J. J., Vollenbroek, F. A. & Beurskens, P. T. Preparation and X-ray structure determination of [pentakis(1,3-bis(diphenylphosphino)propane)] undecagold tris(thiocyante), [Au11(PPH2C3H6PPH2)5](SCN)3 . J. Cryst. Spec. Rec. 13, 355–363 (1983).

    Article  Google Scholar 

  26. Safer, D., Lizann, B. & Leigh, J. S. Undecagold clusters for site-specific labeling of biological macromolecules: simplified preparation and model applications. J. Inorg. Biochem. 26, 77–91 (1986).

    Article  CAS  Google Scholar 

  27. Yang, Y. & Chen, S. Surface manipulation of the electronic energy of subnanometer-sized gold clusters: an electrochemical and spectroscopic investigation. Nano Lett. 3, 75–79 (2003).

    Article  CAS  Google Scholar 

  28. Nunokawa, K. et al. Synthesis and characterization of the Au11 cluster with sterically demanding phosphine ligands by single crystal X-ray diffraction and XPS spectroscopy. Bull. Chem. Soc. Jpn 76, 1601–1602 (2003).

    Article  CAS  Google Scholar 

  29. Woehrle, G. H., Warner, M. G. & Hutchison, J. E. Ligand exchange reactions yield subnanometer, thiol-stabilized gold particles with defined optical transitions. J. Phys. Chem. B 106, 9979–9981 (2002).

    Article  CAS  Google Scholar 

  30. Yanagimoto, Y., Negishi, Y., Fujihara, H. & Tsukuda, T. Chiroptical activity of BINAP-stabilized undecagold clusters. J. Phys. Chem. B 110, 11611–11614 (2006).

    Article  CAS  Google Scholar 

  31. Hall, K. P. & Mingos, D. M. P. Homonuclear and heteronuclear cluster compounds of gold. Prog. Inorg. Chem. 32, 237–325 (1984), and references therein.

    CAS  Google Scholar 

  32. Woehrle, G. H. & Hutchison, J. E. Thiol-functionalized undecagold clusters by ligand exchange: synthesis, mechanism and properties. Inorg. Chem. 44, 6149–6158 (2005).

    Article  CAS  Google Scholar 

  33. Tunik, S. P. et al. Synthesis and characterization of bis-(diphenylphosphinoethane)-substituted hexarhodium clusters: Rh6(CO)14(μ2,η2-Ph2P(CH2)2PPh2), Rh6(CO)152 (μ2,η11-Ph2P(CH2)2 PPh2) and Rh6(CO)15(η1-Ph2 P(CH2)2P(O)Ph2). X-ray crystal structures of Rh6(CO)15PPh3 and Rh6(CO)14 (μ2,η2-Ph2P(CH2)2PPh2) clusters. J. Organomet. Chem. 433, 189–201 (1992).

    Article  CAS  Google Scholar 

  34. Hostetler, M. J. et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–30 (1998).

    Article  CAS  Google Scholar 

  35. De Silva, N., Solovyov, A. & Katz, A. Patterned metal polyhedra using calixarenes as organizational scaffolds: Ir4-based cluster assemblies. Dalton Trans. 39, 2194–2197 (2010).

    Article  CAS  Google Scholar 

  36. Menard, L. D. et al. Sub-nanometer Au monolayer-protected clusters exhibiting molecule-like electronic behavior: quantitative high-angle annular dark-field scanning transmission electron microscopy and electrochemical characterization of clusters with precise atomic stoichiometry. J. Phys. Chem. B 110, 12874–12883 (2006).

    Article  CAS  Google Scholar 

  37. Chusuei, C. C., Lai, X., Luo, K. & Goodman, D. W. Modeling heterogeneous catalysts: metal clusters on planar oxide supports. Top. Catal. 14, 71–83 (2001).

    Article  Google Scholar 

  38. Mason, M. G. Electronic-structure of supported small metal-clusters. Phys. Rev. B 27, 748–762 (1983).

    Article  CAS  Google Scholar 

  39. Menard, L. D. et al. Metal core bonding motifs of monodisperse icosahedral Au13 and larger Au monolayer-protected clusters as revealed by X-ray absorption spectroscopy and transmission electron microscopy. J. Phys. Chem. B 110, 14564–14573 (2006).

    Article  CAS  Google Scholar 

  40. Veith, G. M., Lupini, A. R. & Dudney, N. J. Role of pH in the formation of structurally stable and catalytically active TiO2-supported gold catalysts. J. Phys. Chem. C 113, 269–280 (2009).

    Article  CAS  Google Scholar 

  41. Cariati, F. & Naldini, L. Trianionoeptakis(triarylphosphine)undecagold cluster compounds. Inorg. Chim. Acta 5, 172–174 (1971).

    Article  CAS  Google Scholar 

  42. Vollenbroek, F. A., Bour, J. J., Trooster, J. M. & van der Veldon, J. W. A. Reactions of gold–phosphine cluster compounds. Chem. Commun. 907–909 (1978).

  43. Zhang, P. & Sham T. K. X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys. Rev. Lett. 90, 245502 (2003).

    Article  Google Scholar 

  44. Corma, A. & Garcia, H. Supported Gold Nanoparticles as Oxidation Catalysts in Nanoparticles and Catalysis 389–426 (Wiley VCH Verlag, 2008).

    Google Scholar 

  45. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Ångstrom resolution. Science 318, 430–433 (2007).

    Article  CAS  Google Scholar 

  46. Ha, J.-M., Katz, A., Drapailo, A. B. & Kalchenko, V. I. Mercaptocalixarene-capped gold nanoparticles via postsynthetic modification and direct synthesis: effect of calixarene cavity–metal interactions. J. Phys. Chem. C 113, 1137–1142 (2009).

    Article  CAS  Google Scholar 

  47. Jaguar, version 7.5, MacroModel, version 9.6, Schrodinger, New York (2008).

  48. Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008).

    Article  CAS  Google Scholar 

  49. Zhao, Y., Schultz, N. E. & Truhlar, D. G. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics and noncovalent interactions. J. Chem. Phys. 123, 161103 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chevron Corporation for financial support of this research. The authors acknowledge the technical assistance of R. Nichiporuk in the Mass Spectrometry Facility and National Institutes of Health grant no. 10RR022393-01 for the acquisition of the Q-Tof mass spectrometer. The authors also thank F.J. Hollander and A. Dipasquale for assistance with the characterization of 1a, 1b and 1c by means of single-crystal X-ray diffraction. The authors acknowledge the support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, supported by the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

A.S. designed and synthesized all organic ligands. N.d.S. designed and performed the experiments related to the synthesis of gold complexes, crystals for X-ray diffraction and gold clusters. J.-M.H. designed and performed steady-state fluorescence experiments, HAADF-STEM characterization and NMR experiments with labelled complexes and clusters. M.M.N. and I.O. synthesized labelled gold complexes and clusters. S.W.Y. provided XPS characterization of the gold clusters. K.A.D. contributed computational modelling of the gold complexes and clusters. N.d.S., J.-M.H., A.S. and A.K. conceived the experiments and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Alexander Katz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4212 kb)

Supplementary information

Crystallographic data for compound 1a (CIF 20 kb)

Supplementary information

Crystallographic data for compound 1b (CIF 34 kb)

Supplementary information

Crystallographic data for compound 1c (CIF 31 kb)

Supplementary information

Crystallographic data for compound 2b (CIF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Silva, N., Ha, JM., Solovyov, A. et al. A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nature Chem 2, 1062–1068 (2010). https://doi.org/10.1038/nchem.860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing