Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystallographic snapshots of the reaction of aromatic C–H with O2 catalysed by a protein-bound iron complex

This article has been updated

Abstract

Chemical reactions inside single crystals are quite rare because crystallinity is difficult to retain owing to atomic rearrangements. Protein crystals in general have a high solvent content. This allows for some molecular flexibility, which makes it possible to trap reaction intermediates of enzymatic reactions without disrupting the crystal lattice. A similar approach has not yet been fully implemented in the field of inorganic chemistry. Here, we have combined model chemistry and protein X-ray crystallography to study the intramolecular aromatic dihydroxylation by an arene-containing protein-bound iron complex. The bound complex was able to activate dioxygen in the presence of a reductant, leading to the formation of catechol as the sole product. The structure determination of four of the catalytic cycle intermediates and the end product showed that the hydroxylation reaction implicates an iron peroxo, generated by reductive O2 activation, an intermediate already observed in iron monooxygenases. This strategy also provided unexpected mechanistic details such as the rearrangement of the iron coordination sphere on metal reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Spectroscopic study of the reactivity of NikA/1 towards dioxygen at different stages of the reaction.
Figure 3: Crystal structures and omit Fourier electron density maps of NikA-bound complex 1 at different aromatic hydroxylation stages.
Figure 4: Stereopairs corresponding to omit Fourier electron density maps contoured at 3σ of NikA-bound complex 1 at different aromatic hydroxylation stages.
Figure 5: Proposed mechanistic pathway for the catalytic dihydroxylation of complex 1 derived from X-ray crystallography studies.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Change history

  • 14 October 2010

    In the version of this Article originally published online, an in-house error led to the omission of one of the beamlines from the Acknowledgements. This has now been corrected in all versions of the Article.

References

  1. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Dioxygen activation at mononuclear nonheme iron active sites: Enzymes, models, and intermediates. Chem. Rev. 104, 939–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Denisov, I. G., Makris, T. M., Sligar, S. G. & Schlichting, I. Structure and chemistry of cytochrome P450. Chem. Rev. 105, 2253–2277 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Kovaleva, E. G. & Lipscomb, J. D. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nature Chem. Biol. 4, 186–193 (2008).

    Article  CAS  Google Scholar 

  4. Koehntop, K. D., Emerson, J. P. & Que, L. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. J. Biol. Inorg. Chem. 10, 87–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Que, L. The road to non-heme oxoferryls and beyond. Accounts Chem. Res. 40, 493–500 (2007).

    Article  CAS  Google Scholar 

  6. Schlichting, I. et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Karlsson, A. et al. Crystal structure of naphthalene dioxygenase: Side-on binding of dioxygen to iron. Science 299, 1039–1042 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Kovaleva, E. G. & Lipscomb, J. D. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science 316, 453–457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stavropoulos, P., Celenligil-Cetin, R. & Tapper, A. E. The Gif paradox. Accounts Chem. Res. 34, 745–752 (2001).

    Article  CAS  Google Scholar 

  10. Walling, C., Partch, R. E. & Weil, T. Kinetics of decomposition of hydrogen-peroxide catalyzed by ferric ethylenediaminetetraacetate complex. Proc. Natl. Acad. Sci. USA 72, 140–142 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Udenfriend, S., Clark, C. T., Axelrod, J. & Brodie, B. B. Ascorbic acid in aromatic hydroxylation 1. A model system for aromatic hydroxylation. J. Biol. Chem. 208, 731–739 (1954).

    CAS  PubMed  Google Scholar 

  12. Que, L. & Tolman, W. B. Biologically inspired oxidation catalysis. Nature 455, 333–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Thibon, A. et al. Proton- and reductant-assisted dioxygen activation by a nonheme iron(II) complex to form an oxoiron(IV) intermediate. Angew. Chem. Int. Ed. 47, 7064–7067 (2008).

    Article  CAS  Google Scholar 

  14. Hong, S., Lee, Y. M., Shin, W., Fukuzumi, S. & Nam, W. Dioxygen activation by mononuclear nonheme iron(II) complexes generates iron-oxygen intermediates in the presence of an NADH analogue and proton. J. Am. Chem. Soc. 131, 13910–13911 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Punniyamurthy, T., Velusamy, S. & Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev. 105, 2329–2363 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Ménage, S. et al. O2 activation and aromatic hydroxylation performed by diiron complexes. J. Am. Chem. Soc. 120, 13370–13382 (1998).

    Article  Google Scholar 

  17. Cherrier, M. V., Cavazza, C., Bochot, C., Lemaire, D. & Fontecilla-Camps, J. C. Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA. Biochemistry 47, 9937–9943 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Cherrier, M. V. et al. Crystallographic and spectroscopic evidence for high affinity binding of FeEDTA(H2O)(-) to the periplasmic nickel transporter NikA. J. Am. Chem. Soc. 127, 10075–10082 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Nam, W. Dioxygen activation by metalloenzymes and models. Accounts Chem. Res. 40, 465 (2007).

    Article  CAS  Google Scholar 

  20. Pyrz, J. W., Roe, A. L., Stern, L. J. & Que, L. Model studies of iron tyrosinate proteins. J. Am. Chem. Soc. 107, 614–620 (1985).

    Article  CAS  Google Scholar 

  21. Debruin, K. E., Naumann, K., Zon, G. & Mislow, K. Topological representation of stereochemistry of displacement reactions at phosphorus in phosphonium salts and cognate systems. J. Am. Chem. Soc. 91, 7031–7040 (1969).

    Article  CAS  Google Scholar 

  22. Emerson, J. P., Farquhar, E. R. & Que, L. Structural ‘snapshots’ along reaction pathways of non-heme iron enzymes. Angew. Chem. Int. Ed. 46, 8553–8556 (2007).

    Article  CAS  Google Scholar 

  23. Lehnert, N., Neese, F., Ho, R. Y. N., Que, L. & Solomon, E. I. Electronic structure and reactivity of low-spin Fe(III)-hydroperoxo complexes: Comparison to activated bleomycin. J. Am. Chem. Soc. 124, 10810–10822 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Solomon, E. I., Wong, S. D., Liu, L. V., Decker, A. & Chow, M. S. Peroxo and oxo intermediates in mononuclear nonheme iron enzymes and related active sites. Curr. Opin. Chem. Biol. 13, 99–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katona, G. et al. Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme. Science 316, 449–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Neese, F. & Solomon, E. I. Detailed spectroscopic and theoretical studies on [Fe(EDTA)(O2)](3-): Electronic structure of the side-on ferric-peroxide bond and its relevance to reactivity. J. Am. Chem. Soc. 120, 12829–12848 (1998).

    Article  CAS  Google Scholar 

  27. Horner, O. et al. Hydrogenperoxo-[(bztpen)Fe(OOH)](2+) and its deprotonation product peroxo-[(bztpen)Fe(O2)](+), studied by EPR and Mossbauer spectroscopy. Implications for the electronic structures of peroxo model complexes. Eur. J. Inorg. Chem. 3278–3283 (2002).

    Article  Google Scholar 

  28. Larsen, S. K., Jenkins, B. G., Memon, N. G. & Lauffer, R. B. Structure affinity relationships in the binding of unsubstituted iron phenolate complexes to human serum-albumin—molecular-structure of iron(III) N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetate. Inorg. Chem. 29, 1147–1152 (1990).

    Article  CAS  Google Scholar 

  29. Bernadou, J. & Meunier, B. ‘Oxo-hydroxo tautomerism’ as useful mechanistic tool in oxygenation reactions catalysed by water-soluble metalloporphyrins. Chem. Commun. 2167–2173 (1998).

  30. Park, M. J., Lee, J., Suh, Y., Kim, J. & Nam, W. Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)—hydroperoxo species is a sluggish oxidant. J. Am. Chem. Soc. 128, 2630–2634 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Seo, M. S. et al. Direct evidence for oxygen-atom exchange between nonheme oxoiron(IV) complexes and isotopically labeled water. Angew. Chem. Int. Ed. 43, 2417–2420 (2004).

    Article  CAS  Google Scholar 

  32. Yoon, J. et al. Reactive intermediates in oxygenation reactions with mononuclear nonheme iron catalysts. Angew. Chem. Int. Ed. 48, 1257–1260 (2009).

    Article  CAS  Google Scholar 

  33. Wackett, L. P., Kwart, L. D. & Gibson, D. T. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry 27, 1360–1367 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Klein, G. W., Bhatia, K., Madhavan, V. & Schuler, R. H. Reaction of *OH with benzoic acid–isomer distribution in radical intermediates. J. Phys. Chem. 79, 1767–1774 (1975).

    Article  CAS  Google Scholar 

  35. Janardanan, D. W. Y., Schyman, P., Que, L. Jr & Shaik, S. The fundamental role of exchange-enhanced reactivity in C–H activation by S=2 oxo iron(IV) complexes Angew. Chem. Int. Ed. 49, 3342–3345 (2010).

    Article  CAS  Google Scholar 

  36. Almarsson, O. & Bruice, T. C. A homolytic mechanism of O–O bond scission prevails in the reactions of alkyl hydroperoxides with an octacationic tetraphrnylporphynato-iron(III) complex in aqueous solution. J. Am. Chem. Soc. 117, 4533–4544 (1995).

    Article  CAS  Google Scholar 

  37. Bach, R. D. & Dmitrenko, O. The ‘somersault’ mechanism for the P-450 hydroxylation of hydrocarbons. The intervention of transient inverted metastable hydroperoxides. J. Am. Chem. Soc. 128, 1474–1488 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Bach, R. & Dmitrenko, O. Transient inverted metastable iron hydroperoxides in fenton chemistry. A nonenzymatic model for cytochrome P450 hydroxylation. J. Org. Chem. 75, 3705–3714 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Matsui, T., Unno, M. & Ikeda-Saito, M. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Accounts Chem. Res. 43, 240–247 (2010).

    Article  CAS  Google Scholar 

  40. Bradford, M. M. Rapid and sensititve method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  41. Fish, W. W. Rapid colorimetric micromethod fot the quantitation of complexed iron in biological samples. Methods Enzymol. 158, 357–364 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Agence Nationale pour la Recherche for financial support (ANR 08-CP2D-12 and ANR NT05-2 41493). We also thank Colette Lebrun (SCIB, CEA-Grenoble) for ESI-MS measurements and the CEA, the University Joseph Fourier and the CNRS for institutional support. We thank the staff from the beamlines ID14, BM-30a, ID23-eh2 and cryobench ID29s of the European Synchrotron Radiation Facility in Grenoble, France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christine Cavazza or Stéphane Ménage.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavazza, C., Bochot, C., Rousselot-Pailley, P. et al. Crystallographic snapshots of the reaction of aromatic C–H with O2 catalysed by a protein-bound iron complex. Nature Chem 2, 1069–1076 (2010). https://doi.org/10.1038/nchem.841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing