Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate


Naturally occurring photosynthetic systems use elaborate pathways of self-repair to limit the impact of photo-damage. Here, we demonstrate a complex consisting of two recombinant proteins, phospholipids and a carbon nanotube that mimics this process. The components self-assemble into a configuration in which an array of lipid bilayers aggregate on the surface of the carbon nanotube, creating a platform for the attachment of light-converting proteins. The system can disassemble upon the addition of a surfactant and reassemble upon its removal over an indefinite number of cycles. The assembly is thermodynamically metastable and can only transition reversibly if the rate of surfactant removal exceeds a threshold value. Only in the assembled state do the complexes exhibit photoelectrochemical activity. We demonstrate a regeneration cycle that uses surfactant to switch between assembled and disassembled states, resulting in an increased photoconversion efficiency of more than 300% over 168 hours and an indefinite extension of the system lifetime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of self-assembled photoelectrochemical complexes.
Figure 2: Structural characterization of self-assembled photoelectrochemical complexes.
Figure 3: Purification of self-assembled photoelectrochemical complexes.
Figure 4: Optical signatures of the assembled RC–ND–SWNT complex.
Figure 5: Kinetic model illustrating ND–SWNT concentration throughout dialysis.
Figure 6: Photoelectrochemical activity of an assembled RC–ND–SWNT complex in a photoelectrochemical cell.
Figure 7: Photoelectrochemical activity of a RC–ND–SWNT complex that autonomously regenerates.

Similar content being viewed by others


  1. Aro, E. M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta—Bioenerg. 1143, 113–134 (1993).

    Article  CAS  Google Scholar 

  2. Melis, A. Dynamics of photosynthetic membrane composition and function. Biochim. Biophys. Acta—Bioenerg. 1058, 87–106 (1991).

    Article  CAS  Google Scholar 

  3. Richard, C., Balavoine, F., Schultz, P., Ebbesen, T. W. & Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003).

    Article  CAS  Google Scholar 

  4. Bayburt, T. H., Grinkova, Y. V. & Sligar, S. G. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856 (2002).

    Article  CAS  Google Scholar 

  5. Jones, M. R. The petite purple photosynthetic powerpack. Biochem. Soc. Trans. 37, 400–407 (2009).

    Article  CAS  Google Scholar 

  6. Hoff, A. J. & Deisenhofer, J. Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys. Rep.—Rev. Sec. Phys. Lett. 287, 1–247 (1997).

    CAS  Google Scholar 

  7. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  8. Denisov, I. G., McLean, M. A., Shaw, A. W., Grinkova, Y. V. & Sligar, S. G. Thermotropic phase transition in soluble nanoscale lipid bilayers. J. Phys. Chem. B 109, 15580–15588 (2005).

    Article  CAS  Google Scholar 

  9. Ponder, J. W. & Case, D. A. Force fields for protein simulation. Adv. Protein Chem. 66, 27–85 (2003).

    Article  CAS  Google Scholar 

  10. Hu, L., Hecht, D. S. & Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513–2517 (2004).

    Article  CAS  Google Scholar 

  11. Ham, M. H., Kong, B. S., Kim, W. J., Jung, H. T. & Strano M. S. Unusually large Franz–Keldysh oscillations at ultraviolet wavelengths in single-walled carbon nanotubes. Phys. Rev. Lett. 102, 047402 (2009).

    Article  Google Scholar 

  12. Agostiano, A., Caselli, M., Cosma, P. & Monica, M. D. Electrochemical investigation of the interaction of different mediators with the photosynthetic reaction center from Rhodobacter sphaeroides. Electrochim. Acta 45, 1821–1828 (2000).

  13. Trammell, S. A., Spano, A., Price, R. & Lebedev, N. Effect of protein orientation on electron transfer between photosynthetic reaction centers and carbon electrodes. Biosens. Bioelectron. 21, 1023–1028 (2006).

    Article  CAS  Google Scholar 

  14. Trammell, S. A., Wang, L., Zullo, J. M., Shashidhar, R. & Lebedev, N. Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers. Biosens. Bioelectron. 19, 1649–1655 (2004).

    Article  CAS  Google Scholar 

  15. Khairnar, U. P., Bhavsar, D. S., Vaidya, R. U. & Bhavsar, G. P. Optical properties of thermally evaporated cadmium telluride thin films. Mater. Chem. Phys. 80, 421–427 (2003).

    Article  CAS  Google Scholar 

  16. Zhao, J. et al. Photoelectrochemistry of photosynthetic reaction centers embedded in Al2O3 gel. J. Photochem. Photobiol. A 152, 53–60 (2002).

    Article  CAS  Google Scholar 

  17. Kalabina, N. A., Zaitsev, S. Y., Zubov, V. P., Lukashev, E. P. & Kononenko, A. A. Polymer ultrathin films with immobilized photosynthetic reaction center proteins. Biochim. Biophys. Acta—Biomembr. 1284, 138–142 (1996).

    Article  Google Scholar 

  18. Sommeling, P. M., Spath, M., Smit, H. J. P., Bakker, N. J. & Kroon, J. M. Long-term stability testing of dye-sensitized solar cells. J. Photochem. Photobiol. A 164, 137–144 (2004).

    Article  CAS  Google Scholar 

  19. Kuang, D. et al. Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells. Small 3, 2094–2102 (2007).

    Article  CAS  Google Scholar 

  20. Wang, M. et al. Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer. Small 6, 319–324 (2010).

    Article  CAS  Google Scholar 

  21. Biancardo, M., West, K. & Krebs, F. C. Quasi-solid-state dye-sensitized solar cells: Pt and PEDOT:PSS counter electrodes applied to gel electrolyte assemblies. J. Photochem. Photobiol. A 187, 395–401 (2007).

    Article  CAS  Google Scholar 

  22. Kermasha, S., Khalyfa, A., Marsot, P., Alli, I. & Fournier, R. Biomass production, purification and characterization of chlorophyllase, from alga (Phaeodactylum tricornutum). Biotechnol. Appl. Biochem. 15, 142–159 (1992).

    CAS  Google Scholar 

  23. Voronin, P. Y. et al. Chlorophyll index and annual photosynthetic carbon sequestering in Sphagnum phytocenoses. Russ. J. Plant Physiol. 44, 23–29 (1997).

  24. Melis, A., Neidhardt, J., Baroli, I. & Benemann, J. R. Maximizing photosynthetic productivity and light utilization in microalgae by minimizing the light-harvesting chlorophyll antenna size of the photosystems. In BioHydrogen (ed. Zaborsky, O. R.) 41–52 (Plenum Press, 1998).

    Google Scholar 

  25. Dawson, T. L. Biosynthesis and synthesis of natural colours. Color. Technol. 125, 61–73 (2009).

    Article  CAS  Google Scholar 

  26. Moser, S., Muller, T., Oberhuber, M. & Krautler, B. Chlorophyll catabolites—chemical and structural footprints of a fascinating biological phenomenon. Eur. J. Org. Chem. 2009, 21–31 (2009).

    Article  Google Scholar 

  27. Vasilikiotis, C. & Melis, A. The role of chloroplast-encoded protein biosynthesis on the rate of D1 protein degradation in Dunaliella salina. Photosynth. Res. 45, 147–155 (1995).

    Article  CAS  Google Scholar 

  28. Goldsmith, J. O. & Boxer, S. G. Rapid isolation of bacteria photosynthetic reaction centers with an engineered poly-histidine tag. Biochim. Biophys. Acta—Bioenerg. 1276, 171–175 (1996).

    Article  Google Scholar 

  29. Takahashi, E. & Wraight, C. A. Proton and electron transfer in the acceptor quinone complex of Rhodobacter sphaeroides reaction centers: characterization of site-directed mutants of the two ionizable residues, GluL212 and AspL213, in the QB binding site. Biochemistry 31, 855–866 (1992).

    Article  CAS  Google Scholar 

Download references


This work was financially supported by a grant from ENI Petroleum Co. Inc. Eni S.p.A. under the Eni–MIT Alliance Solar Frontiers Program, seed funding from the MIT Energy Initiative (MITEI) and the U.S. Department of Energy (grant no. ER46488). M.H.H. is grateful for support from the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-357-D00133). J.H.C. acknowledges financial support from Purdue University. Membrane scaffold proteins were produced and initial PSII reconstitution experiments were supported by NIH GM33775.

Author information

Authors and Affiliations



M.H.H., J.H.C., A.A.B. and M.S.S. designed the research. M.H.H., J.H.C., A.A.B., R.A.G. and D.A.H. synthesized the complexes. M.H.H. performed the photoelectrochemical experiments. J.H.C. purified the complexes and performed the spectroscopic experiments with A.C.C. A.A.B. performed kinetic modelling of complex formation. E.S.J. performed modelling of the DMPC configuration on the SWNT. A.M. and C.A.W. supplied the photosynthetic reaction centres. Y.V.G. and S.G.S. supplied the membrane scaffold proteins and conducted initial reconstitution experiments. T.H.B., A.S.Z. and K.J.V. performed AFM measurements. E.K.H. performed SANS measurements. M.S.S. originated the concept for the paper. M.H.H., J.H.C., A.A.B. and M.S.S. co-wrote the manuscript with input from S.G.S. and C.A.W.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1221 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ham, MH., Choi, J., Boghossian, A. et al. Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nature Chem 2, 929–936 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research