Bridging-ligand-substitution strategy for the preparation of metal–organic polyhedra

Abstract

Metal–organic polyhedra—discrete molecular architectures constructed through the coordination of metal ions and organic linkers—have recently attracted considerable attention due to their intriguing structures, their potential for a variety of applications and their relevance to biological self-assembly. Several synthetic routes have been investigated to prepare these complexes. However, to date, these preparative methods have typically been based on the direct assembly of metal ions and organic linkers. Although these routes are convenient, it remains difficult to find suitable reaction conditions or to control the outcome of the assembly process. Here, we demonstrate a synthetic strategy based on the substitution of bridging ligands in soluble metal–organic polyhedra. The introduction of linkers with different properties from those of the initial metal–organic polyhedra can thus lead to new metal–organic polyhedra with distinct properties (including size and shape). Furthermore, partial substitution can also occur and form mixed-ligand species that may be difficult to access by means of other approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structures of the building blocks.
Figure 2: Schematic of the syntheses and crystal structures of compounds 1–10.
Figure 3: Polyhedral representations of MOPs 4 and 5.
Figure 4: Polyhedral projection labelling of MOPs.
Figure 5: Gas adsorption isotherms of activated MOP 1.

References

  1. 1

    Olenyuk, B., Whiteford, J. A., Fechtenkötter, A. & Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398, 796–799 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Takeda, N., Umemoto, K., Yamaguchi, K. & Fujita, M. A nanometre-sized hexahedral coordination capsule assembled from 24 components. Nature 398, 794–796 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Hof, F. & Rebek, J. Jr. Molecules within molecules: recognition through self-assembly. Proc. Natl Acad. Sci. USA 99, 4775–4777 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Pluth, M. D., Bergman, R. G. & Raymond, K. N. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science 316, 85–88 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Lehn, J.-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Koblenz, T. S., Wassenaar, J. & Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 37, 247–262 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Lee, S. J. et al. Cavity-tailored, self-sorting supramolecular catalytic boxes for selective oxidation. J. Am. Chem. Soc. 130, 16828–16829 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Jung, M., Kim, H., Baek, K. & Kim, K. Synthetic ion channel based on metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5755–5757 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Mal, P., Breiner, B., Rissanen, K. & Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Sawada, T., Yoshizawa, M., Sato, S. & Fujita, M. Minimal nucleotide duplex formation in water through enclathration in self-assembled hosts. Nature Chem. 1, 53–56 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Ronson, T. K. et al. Stellated polyhedral assembly of a topologically complicated Pd4L4 ‘Solomon cube’. Nature Chem. 1, 212–216 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Stoddart, J. F. Thither supramolecular chemistry. Nature Chem. 1, 14–15 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Duriska, M. B. et al. Systematic metal variation and solvent and hydrogen-gas storage in supramolecular nanoballs. Angew. Chem. Int. Ed. 48, 8919–8922 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Caulder, D. L. & Raymond, K. N. Supermolecules by design. Acc. Chem. Res. 32, 975–982 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Leininger, S., Olenyuk, B. & Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 100, 853–908 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Fujita, M. et al. Molecular paneling via coordination. Chem. Commun. 509–518 (2001).

  17. 17

    McKinlay, R. M., Cave, G. W. V. & Atwood, J. L. Supramolecular blueprint approach to metal-coordinated capsules. Proc. Natl Acad. Sci. USA 102, 5944–5948 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Gianneschi, N. C., Maser, M. S. & Mirkin, C. A. Development of a coordination chemistry-based approach for functional supramolecular structures. Acc. Chem. Res. 38, 825–837 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Tranchemontagne, D. J., Ni, Z., O'Keeffe, M. & Yaghi, O. M. Reticular chemistry of metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5136–5147 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Hamilton, T. D., Papaefstathiou, G. S., Friščić, T., Bučar, D.-K. & MacGillivray, L. R. Onion-shell metal–organic polyhedra (MOPs): a general approach to decorate the exteriors of MOPs using principles of supramolecular chemistry. J. Am. Chem. Soc. 130, 14366–14367 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Ercolani, G. Assessment of cooperativity in self-assembly. J. Am. Chem. Soc. 125, 16097–16103 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Nitschke, J. R. & Lehn, J.-M. Self-organization by selection: generation of a metallosupramolecular grid architecture by selection of components in a dynamic library of ligands. Proc. Natl Acad. Sci. USA 100, 11970–11974 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Zheng, Y.-R., Yang, H.-B., Northrop, B. H., Ghosh, K. & Stang, P. J. Size selective self-sorting in coordination-driven self-assembly of finite ensembles. Inorg. Chem. 47, 4706–4711 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Northrop, B. H., Zheng, Y.-R., Chi, K.-W. & Stang, P. J. Self-organization in coordination-driven self-assembly. Acc. Chem. Res. 42, 1554–1563 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Li, J.-R. & Zhou, H.-C. Metal–organic hendecahedra assembled from dinuclear paddlewheel nodes and mixtures of ditopic linkers with 120 and 90° bend angles. Angew. Chem. Int. Ed. 48, 8465–8468 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Fujita, M., Fujita, N., Ogura, K. & Yamaguchik, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. Nature 400, 52–55 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Hiraoka, S., Sakata, Y. & Shionoya, M. Ti(IV)-centered dynamic interconversion between Pd(II), Ti(IV)-containing ring and cage molecules. J. Am. Chem. Soc. 130, 10058–10059 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Al-Rasbi, N. K. et al. Mixed-ligand molecular paneling: dodecanuclear cuboctahedral coordination cages based on a combination of edge-bridging and face-capping ligands. J. Am. Chem. Soc. 130, 11641–11649 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Zheng, Y.-R. & Stang, P. J. Direct and quantitative characterization of dynamic ligand exchange between coordination-driven self-assembled supramolecular polygons. J. Am. Chem. Soc. 131, 3487–3489 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Ke, Y., Collins, D. J. & Zhou, H.-C. Synthesis and structure of cuboctahedral and anticuboctahedral cages containing 12 quadruply bonded dimolybdenum units. Inorg. Chem. 44, 4154–4156 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Abourahma, H. et al. Hydroxylated nanoballs: synthesis, crystal structure, solubility and crystallization on surfaces. Chem. Commun. 2380–2381 (2001).

  32. 32

    Li, J.-R., Timmons, D. J. & Zhou, H.-C. Interconversion between molecular polyhedra and metal–organic frameworks. J. Am. Chem. Soc. 131, 6368–6369 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Eddaoudi, M. et al. Porous metal–organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 123, 4368–4369 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Moulton, B., Lu, J., Mondal, A. & Zaworotko, M. J. Nanoballs: nanoscale faceted polyhedra with large windows and cavities. Chem. Commun. 863–864 (2001).

  35. 35

    Kristiansson, O. & Tergenius, L.-E. Structure and host–guest properties of the nanoporous diaquatetrakis(p-nitrobenzoato)dicopper(II) framework. J. Chem. Soc. Dalton Trans. 1415–1420 (2001).

  36. 36

    Sato, S., Ishido, Y. & Fujita, M. Remarkable stabilization of M12L24 spherical frameworks through the cooperation of 48 Pd(II)–pyridine interactions. J. Am. Chem. Soc. 131, 6064–6065 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Richens, D. T. Ligand substitution reactions at inorganic centers. Chem. Rev. 105, 1961–2002 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Puddephatt, R. J. Macrocycles, catenanes, oligomers and polymers in gold chemistry. Chem. Soc. Rev. 37, 2012–2027 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Bagai, R. & Christou, G. The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. Chem. Soc. Rev. 38, 1011–1026 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Larsen, R. W. How fast do metal organic polyhedra form in solution? Kinetics of [Cu2(5-OH-bdc)2L2]12 formation in methanol. J. Am. Chem. Soc. 130, 11246–11247 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Tozawa, T. et al. Porous organic cages. Nature Mater. 8, 973–978 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported as part of the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001015. The authors thank A. Yakovenko for his help in crystal structure refinement and PXRD analysis.

Author information

Affiliations

Authors

Contributions

J.R.L. and H.C.Z. conceived and designed the experiments, analysed data and co-wrote the paper. J.R.L. performed all experiments.

Corresponding author

Correspondence to Hong-Cai Zhou.

Supplementary information

Supplementary information

Supplementary information (PDF 1735 kb)

Supplementary information

nchem.803-S2.cif Crystallographic data for compound 1 (CIF 28 kb)

Supplementary information

nchem.803-S3.cif Crystallographic data for compound 2 (CIF 27 kb)

Supplementary information

nchem.803-S4.cif Crystallographic data for compound 3 (CIF 32 kb)

Supplementary information

nchem.803-S5.cif Crystallographic data for compound 4 (CIF 88 kb)

Supplementary information

nchem.803-S6.cif Crystallographic data for compound 5 (CIF 47 kb)

Supplementary information

nchem.803-S7.cif Crystallographic data for compound 6 (CIF 58 kb)

Supplementary information

nchem.803-S8.cif Crystallographic data for compound 7 (CIF 47 kb)

Supplementary information

nchem.803-S9.cif Crystallographic data for compound 8 (CIF 41 kb)

Supplementary information

nchem.803-S10.cif Crystallographic data for compound 9 (CIF 53 kb)

Supplementary information

nchem.803-S11.cif Crystallographic data for compound 10 (CIF 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, J., Zhou, H. Bridging-ligand-substitution strategy for the preparation of metal–organic polyhedra. Nature Chem 2, 893–898 (2010). https://doi.org/10.1038/nchem.803

Download citation

Further reading