Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of cortistatins A, J, K and L

Abstract

The cortistatins are a recently identified class of marine natural products characterized by an unusual steroidal skeleton, which have been found to inhibit differentially the proliferation of various mammalian cells in culture by an unknown mechanism. We describe a comprehensive route for the synthesis of cortistatins from a common precursor, which in turn is assembled from two fragments of similar structural complexity. Cortistatins A and J, and for the first time K and L, have been synthesized in parallel processes from like intermediates prepared from a single compound. With the identification of facile laboratory transformations linking intermediates in the cortistatin L synthetic series with corresponding intermediates to cortistatins A and J, we have been led to speculate that somewhat related paths might occur in nature, offering potential sequencing and chemical detail for cortistatin biosynthetic pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cortistatins A, J, K and L and their IC50 values measured in cultured HUVECs.
Figure 2: A key precursor to cortistatins and its retrosynthetic disconnection.
Figure 3: Preparation of the o-vinyl benzylzinc reagent 8.
Figure 4: Synthesis of azido alcohol 5 from α-methylene ketone 15.
Figure 5: Synthetic pathways to 17-keto precursors to cortistatins A, J, K and L from azido alcohol 5.
Figure 6: Syntheses of cortistatins A, L, J and K.
Figure 7: Chemical interconversions among intermediates of cortistatin series A, J and L and a hypothesized parallel biosynthetic sequence.

Similar content being viewed by others

References

  1. Aoki, S. et al. Cortistatins A, B, C and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex. J. Am. Chem. Soc. 128, 3148–3149 (2006).

    CAS  PubMed  Google Scholar 

  2. Watanabe, Y., Aoki, S., Tanabe, D., Setiawan, A. & Kobayashi, M. Cortistatins E, F, G and H, four novel steroidal alkaloids from marine sponge Corticium simplex. Tetrahedron 63, 4074–4079 (2007).

    CAS  Google Scholar 

  3. Aoki, S. et al. Cortistatins J, K, L, novel abeo-9(10-19)-androstane-type steroidal alkaloids with isoquinoline unit, from marine sponge Corticium simplex. Tetrahedron Lett. 48, 4485–4488 (2007).

    CAS  Google Scholar 

  4. Aoki, S. et al. Structure–activity relationship and biological property of cortistatins, anti-angiogenic spongean steroidal alkaloids. Bioorg. Med. Chem. 15, 6758–6762 (2007).

    CAS  PubMed  Google Scholar 

  5. Shenvi, R. A., Guerrero, C. A., Shi, J., Li, C.-C. & Baran, P. S. Synthesis of (+)-cortistatin A. J. Am. Chem. Soc. 130, 7241–7243 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicolaou, K. C., Sun, Y. P., Peng, X. S., Polet, D. & Chen, D. Y. K. Total synthesis of (+)-cortistatin A. Angew. Chem. Int. Ed. 47, 7310–7313 (2008).

    CAS  Google Scholar 

  7. Lee, H. M., Nieto-Oberhuber, C. & Shair, M. D. Enantioselective synthesis of (+)-cortistatin A, a potent and selective inhibitor of endothelial cell proliferation. J. Am. Chem. Soc. 130, 16864–16866 (2008).

    CAS  PubMed  Google Scholar 

  8. Simmons, E. M., Hardin, A. R., Guo, X. & Sarpong, R. Rapid construction of the cortistatin pentacyclic core. Angew. Chem. Int. Ed. 47, 6650–6653 (2008).

    CAS  Google Scholar 

  9. Yamashita, S., Iso, K. & Hirama, M. A concise synthesis of the pentacyclic framework of cortistatins. Org. Lett. 10, 3413–3415 (2008).

    CAS  PubMed  Google Scholar 

  10. Craft, D. T. & Gung, B. W. The first transannular [4 + 3] cycloaddition reaction: synthesis of the ABCD ring structure of cortistatins. Tetrahedron Lett. 49, 5931–5934 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai, M. J. & Danishefsky, S. J. A concise synthesis of the cortistatin core. Tetrahedron Lett. 49, 6610–6612 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dai, M. J., Wang, Z. & Danishefsky, S. J. A novel α,β–unsaturated nitrone-aryne [3 + 2] cycloaddition and its application in the synthesis of the cortistatin core. Tetrahedron Lett. 49, 6613–6616 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kotoku, N., Sumii, Y., Hayashi, T. & Kobayashi, M. Synthesis of CD-ring structure of cortistatin A, an anti-angiogenic steroidal alkaloid from marine sponge. Tetrahedron Lett. 49, 7078–7081 (2008).

    CAS  Google Scholar 

  14. Kurti, L., Czako, B. & Corey, E. J. A short, scalable synthesis of the carbocyclic core of the anti-angiogenic cortistatins from (+)-estrone by B-ring expansion. Org. Lett. 10, 5247–5250 (2008).

    CAS  PubMed  Google Scholar 

  15. Dai, M. J. & Danishefsky, S. J. An oxidative dearomatization cyclization model for cortistatin A. Heterocycles 77, 157–161 (2009).

    CAS  Google Scholar 

  16. Liu, L. Z. et al. A model study for the concise construction of the oxapentacyclic core of cortistatins through intramolecular Diels–Alder and oxidative dearomatization–cyclization reactions. Chem. Commun. 662–664 (2009).

  17. Magnus, P. & Littich, R. Intramolecular cyclopropene-furan [2 + 4] cycloaddition followed by a cyclopropylcarbinyl rearrangement to synthesize the BCD rings of cortistatin A. Org. Lett. 11, 3938–3941 (2009).

    CAS  PubMed  Google Scholar 

  18. Frie, J. L., Jeffrey, C. S. & Sorensen, E. J. A hypervalent iodine-induced double annulation enables a concise synthesis of the pentacyclic core structure of the cortistatins. Org. Lett. 11, 5394–5397 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamashita, S., Kitajima, K., Iso, K. & Hirama, M. Efficient and stereoselective installation of isoquinoline: formal total synthesis of cortistatin A. Tetrahedron Lett. 50, 3277–3279 (2009).

    CAS  Google Scholar 

  20. Simmons, E. M., Hardin-Narayan, A. R., Guo, X. & Sarpong, R. Formal total synthesis of (±)-cortistatin A. Tetrahedron 66, 4696–4700 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nicolaou, K. C. et al. Total synthesis and biological evaluation of cortistatins A and J and analogues thereof. J. Am. Chem. Soc. 131, 10587–10597 (2009).

    CAS  PubMed  Google Scholar 

  22. Shi, J. et al. Stereodivergent synthesis of 17-α and 17-β-aryl steroids: application and biological evaluation of D-ring cortistatin analogues. Angew. Chem. Int. Ed. 48, 4328–4331 (2009).

    CAS  Google Scholar 

  23. Czako, B., Kurti, L., Mammoto, A., Ingber, D. E. & Corey, E. J. Discovery of potent and practical antiangiogenic agents inspired by cortistatin A. J. Am. Chem. Soc. 131, 9014–9019 (2009).

    CAS  PubMed  Google Scholar 

  24. Cee, V. J., Chen, D. Y. K., Lee, M. R. & Nicolaou, K. C. Cortistatin A is a high-affinity ligand of protein kinases ROCK, CDK8 and CDK11. Angew. Chem. Int. Ed. 48, 8952–8957 (2009).

    CAS  Google Scholar 

  25. Berk, S. C., Knochel, P. & Yeh, M. C. P. General approach to highly functionalized benzylic organometallics of zinc and copper. J. Org. Chem. 53, 5789–5791 (1988).

    CAS  Google Scholar 

  26. Pearson, D. E., Cowan, D. & Beckler, J. D. A study of the entrainment method for making Grignard reagents. J. Org. Chem. 24, 504–509 (1959).

    CAS  Google Scholar 

  27. Isaacs, R. C. A., Digrandi, M. J. & Danishefsky, S. J. Synthesis of an enantiomerically pure intermediate containing the CD substructure of taxol. J. Org. Chem. 58, 3938–3941 (1993).

    CAS  Google Scholar 

  28. Hajos, Z. G. & Parrish, D. R. (+)-(7aS)-7a-methyl-2,3,7,7a-tetrahydro-1H-indene-1,5-6H-dione. In Organic Syntheses, Vol. 63, 26–31 (Wiley & Sons, 1985).

    Google Scholar 

  29. Evans, D. A., Hurst, K. M. & Takacs, J. M. New silicon-phosphorus reagents in organic synthesis: carbonyl and conjugate addition reactions of silicon phosphite esters and related systems. J. Am. Chem. Soc. 100, 3467–3477 (1978).

    CAS  Google Scholar 

  30. Kozikowski, A. P. & Jung, S. H. Phosphoniosilylation: an efficient and practical method for the β-functionalization of enones. J. Org. Chem. 51, 3400–3402 (1986).

    CAS  Google Scholar 

  31. Mi, Y., Schreiber, J. V. & Corey, E. J. Total synthesis of (+)-α-onocerin in four steps via four-component coupling and tetracyclization steps. J. Am. Chem. Soc. 124, 11290–11291 (2002).

    CAS  PubMed  Google Scholar 

  32. Walker, S. D., Barder, T. E., Martinelli, J. R. & Buchwald, S. L. A rationally designed universal catalyst for Suzuki–Miyaura coupling processes. Angew. Chem. Int. Ed. 43, 1871–1876 (2004).

    CAS  Google Scholar 

  33. Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1, 953–956 (1999).

    CAS  PubMed  Google Scholar 

  34. Murray, R. W. & Singh, M. Synthesis of epoxides using dimethyldioxirane: trans-stilbene oxide. In Organic Syntheses, Vol. 74, 91–100 (Wiley & Sons, 1997).

    Google Scholar 

  35. Thummel, R. P. & Rickborn, B. Base-induced rearrangement of epoxides. V. Phenyl-substituted epoxides. J. Org. Chem. 37, 3919–3923 (1972).

    CAS  Google Scholar 

  36. Kita, Y., Tohma, H., Kikuchi, K., Inagaki, M. & Yakura, T. Hypervalent iodine oxidation of N-acyltyramines: synthesis of quinol ethers, spirohexadienones and hexahydroindol-6-ones. J. Org. Chem. 56, 435–438 (1991).

    CAS  Google Scholar 

  37. Kogure, T. & Ojima, I. Reduction of carbonyl compounds via hydrosilylation. 4. Highly regioselective reductions of α,β-unsaturated carbonyl compounds. Organometallics 1, 1390–1399 (1982).

    Google Scholar 

  38. Corey, E. J. & Helal, C. J. Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: a new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew. Chem. Int. Ed. 37, 1986–2012 (1998).

    CAS  Google Scholar 

  39. San Filippo, J., Chern, C. I. & Valentine, J. S. Reaction of superoxide with alkyl halides and tosylates. J. Org. Chem. 40, 1678–1680 (1975).

    CAS  Google Scholar 

  40. Corey, E. J., Nicolaou, K. C., Shibasaki, M., Machida, Y. & Shiner, C. S. Superoxide ion as a synthetically useful oxygen nucleophile . Tetrahedron Lett. 37, 3183–3186 (1975).

    Google Scholar 

  41. Ishihara, K., Kubota, M., Kurihara, H. & Yamamoto, H. Scandium trifluoromethanesulfonate as an extremely active acylation catalyst. J. Am. Chem. Soc. 117, 4413–4414 (1995).

    CAS  Google Scholar 

  42. Hutchins, R. O., Learn, K. & Fulton, R. P. Reductive displacement of allylic acetates by hydride transfer via catalytic activation by palladium(0) complexes. Tetrahedron Lett. 21, 27–30 (1980).

    CAS  Google Scholar 

  43. Couturier, M., Tucker, J. L., Andresen, B. M., Dube, P. & Negri, J. T. Palladium and Raney nickel catalyzed methanolic cleavage of stable borane–amine complexes. Org. Lett. 3, 465–467 (2001).

    CAS  PubMed  Google Scholar 

  44. Moon, S. S., Stuhmiller, L. M. & McMorris, T. C. Synthesis of oogoniol. J. Org. Chem. 54, 26–28 (1989).

    CAS  Google Scholar 

  45. Foy, N. et al. Synthesis, receptor binding, molecular modeling and proliferative assays of a series of 17α-arylestradiols. Chembiochem. 4, 494–503 (2003).

    CAS  PubMed  Google Scholar 

  46. Jang, D. O., Kim, J. G., Cho, D. H. & Chung, C. M. Radical deoxygenation of alcohols via their trifluoroacetate derivatives with diphenylsilane. Tetrahedron Lett. 42, 1073–1075 (2001).

    CAS  Google Scholar 

  47. Kim, J. G., Cho, D. H. & Jang, D. O. Radical deoxygenation of tertiary alcohols via trifluoroacetates. Tetrahedron Lett. 45, 3031–3033 (2004).

    CAS  Google Scholar 

  48. D' Auria, M. V., Minale, L. & Riccio, R. Polyoxygenated steroids of marine origin. Chem. Rev. 93, 1839–1895 (1993).

    CAS  Google Scholar 

  49. Sarma, N. S., Krishna, M. S. R. & Rao, S. R. Sterol ring system oxidation pattern in marine sponges. Mar. Drugs 3, 84–111 (2005).

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from the National Institutes of Health (Stimulus grant no. CA047148-22S1) is gratefully acknowledged. A.N.F. acknowledges a scholarship from Eli Lilly and Company. We gratefully acknowledge G. Zou for measuring the GI50 values of cortistatins A, J, K and L and A.W.G. Burgett and M.D. Shair for their assistance with these measurements as well as a gift of the HUVEC. We acknowledge helpful discussions with C. T. Walsh and E. Balskus.

Author information

Authors and Affiliations

Authors

Contributions

A.N.F., C.S. and A.G.M conceived the synthetic route. A.N.F and C.S. conducted all experimental work and analysed the results. A.N.F., C.S. and A.G.M. wrote the manuscript.

Corresponding author

Correspondence to Andrew G. Myers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flyer, A., Si, C. & Myers, A. Synthesis of cortistatins A, J, K and L. Nature Chem 2, 886–892 (2010). https://doi.org/10.1038/nchem.794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing