Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide

This article has been updated

Abstract

The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical measurements on CN-modified and unmodified Pt(111) surfaces in solutions containing strongly adsorbing sulfuric and phosphoric acid anions.
Figure 2: Electrochemical measurements on CN-modified and unmodified Pt(111) surfaces in solutions containing weakly adsorbing perchloric acid anions and hydrated alkali metal cations.
Figure 3: Proposed models for selective adsorption of spectator species and reactants and schematic presentation of the availability of platinum surface atoms for adsorption of O2 molecules on CN-free and CN-covered Pt(111).

Similar content being viewed by others

Change history

  • 26 August 2010

    In the version of this Article originally published, the second author's surname was incorrectly spelt, it should have read María Escudero-Escribano. This has now been corrected on all versions of the Article.

References

  1. Vielstich, W., Lamm, A. & Gasteiger, H. (eds) Handbook of Fuel Cells, Vol. 1, Fundamentals and Survey of Systems (Wiley, 2003).

    Google Scholar 

  2. Schmidt, T. J. & Baurmeister, J. Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J. Power Sources 176, 428–434 (2008).

    Article  CAS  Google Scholar 

  3. Seel, D. C., Benicewicz, B. C., Xiao, L. & Schmidt, T. J. in Handbook of Fuel Cells, Fundamentals and Technology, Vol. 5: Advances in Electrocatalysis, Materials and Durability: Part 1 (eds Vielstich, W., Yokokawa, H. & Gasteiger, H. A.) (John Wiley &Sons, 2009).

    Google Scholar 

  4. Markovic, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  CAS  Google Scholar 

  5. Gasteiger, H. A. & Markovic, N. M. Just a dream—or future reality. Science 324, 47–48 (2009).

    Article  Google Scholar 

  6. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  7. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).

    Article  CAS  Google Scholar 

  8. Srivastava, R., Mani, P., Hahn, N. & Strasser, P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew. Chem. Int. Ed. 46, 8988–8991 (2007).

    Article  Google Scholar 

  9. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010).

    Article  CAS  Google Scholar 

  10. Nilekar, A. U. et al. Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top. Catal. 46, 276–284 (2007).

    Article  CAS  Google Scholar 

  11. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chem. 1, 466–472 (2009).

    Article  CAS  Google Scholar 

  12. Cuesta A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. J. Am. Chem. Soc. 128, 13332–13333 (2006).

    Article  CAS  Google Scholar 

  13. Cuesta, A., Escudero, M., Lanova, B. & Baltruschat, H. Cyclic voltammetry, FTIRS and DEMS study of the electrooxidation of carbon monoxide, formic acid and methanol on cyanide-modified Pt(111) electrodes. Langmuir 25, 6500–6507 (2009).

    Article  CAS  Google Scholar 

  14. Mostany, J., Herrero, E., Feliu, J. M. & Lipkowski, J. Thermodynamic studies of anion adsorption at stepped platinum (hkl) electrode surfaces in sulfuric acid solutions. J. Phys. Chem. B 106, 12787–12796 (2002).

    Article  CAS  Google Scholar 

  15. Mostany, J., Martínez, P., Climent, V., Herrero, E. & Feliu, J. M. Thermodynamic studies of phosphate adsorption on Pt(111) electrode surfaces in perchloric acid solutions. Electrochim. Acta 54, 5836–5843 (2009).

    Article  CAS  Google Scholar 

  16. Garcia, N., Climent, V., Orts, J. M., Feliu, J. M. & Aldaz, A. Effect of pH and alkaline metal cations on the voltammetry of Pt(111) single crystal electrodes in sulfuric acid solutions. ChemPhysChem 5, 1221–1227 (2004).

    Article  CAS  Google Scholar 

  17. Stickney, J. L., Rosasco, S. D., Salaita, G. N. & Hubbard, A. T. Ordered ionic layers formed on Pt(111) from aqueous solutions. Langmuir 1, 66–71 (1985).

    Article  CAS  Google Scholar 

  18. Schardt, B. C. et al. Surface coordination chemistry of well-defined platinum electrodes: surface polyprotic acidity of platinum(111)(2√3×2√3)R30°-hydrogen isocyanide. Inorg. Chem. 24, 1419–1421 (1985).

    Article  CAS  Google Scholar 

  19. Frank, D. G. et al. pH and potential dependence of the electrical double layer at well-defined electrode surfaces: Cs+ and Ca2+ ions at Pt(111) (2√3×2√3)R30°–CN, Pt(111) (√13×√13)R14°–CN, and Pt(111) (2×2)–SCN. Langmuir 1, 587–592 (1985).

    Article  CAS  Google Scholar 

  20. Hubbard, A. T. Electrochemistry at well-characterized surfaces. Chem. Rev. 88, 633–656 (1988).

    Article  CAS  Google Scholar 

  21. Paulissen, V. B. & Korzeniewski, C. Infrared spectroscopy as a probe of the adsorption and electrooxidation of a cyanide monolayer at platinum under aqueous electrochemical conditions. J. Phys. Chem. 96, 4563–4567 (1992).

    Article  CAS  Google Scholar 

  22. Kim, C. S. & Korzeniewski, C. Cyanide adsorbed as a monolayer at the low-index surface planes of platinum metal electrodes: an in situ study by infrared spectroscopy. J. Phys. Chem. 97, 9784–9787 (1993).

    Article  CAS  Google Scholar 

  23. Stuhlmann, C. Villegas, I. & Weaver, M. J. Scanning tunneling microscopy and infrared spectroscopy as combined in situ probes of electrochemical adlayer structure. Chem. Phys. Lett. 219, 319–324 (1994).

    Article  CAS  Google Scholar 

  24. Sawaguchi, T., Yamada, T., Okinaka, Y. & Itaya, K. Electrochemical scanning tunneling microscopy and ultrahigh-vacuum investigation of gold cyanide adlayers on Au(111) formed in aqueous solution. J. Phys. Chem. 99, 14149–14155 (1995).

    Article  CAS  Google Scholar 

  25. Stuhlmann, C. Characterization of an electrode adlayer by in situ infrared spectroscopy: cyanide on Pt(111). Surf. Sci. 335, 221–226 (1995).

    Article  CAS  Google Scholar 

  26. Friedrich, F. A. et al. In situ spectroscopy of cyanide vibration on Pt(111) and Pt(110) electrode surfaces: potential dependencies and the influence of surface disorder. Surf. Sci. 335, 315–325 (1995).

    Article  CAS  Google Scholar 

  27. Kim, Y. G., Yau, S. L. & Itaya, K. Direct observation of complexation of alkali cations on cyanide-modified Pt(111) by scanning tunneling microscopy. J. Am. Chem. Soc. 118, 393–400 (1996).

    Article  CAS  Google Scholar 

  28. Inuaki, J., Morioka, Y., Kim, Y. G., Yau, S. L. & Itaya, K. Cation effects on infrared reflection adsorption spectra of cyanide adsorbed on Pt(111) electrode in electrolyte solution. Bull. Chem. Soc. Jpn 70, 1787–1794 (1997).

    Article  Google Scholar 

  29. Huerta, F. J., Morallon, E., Quijada, C., Vazquez, J. L. & Aldaz, A. Spectroelectrochemical study on CN adsorbed at Pt(111) in sulfuric and perchloric media. Electrochim. Acta 44, 943–948 (1998).

    Article  CAS  Google Scholar 

  30. Huerta, F. J., Morallon, E., Vazquez, J. L. & Aldaz, A. Voltammetric and spectrocsopic characterization of cyanide adlayers on Pt(h,k,l) in an acidic medium. Surf. Sci. 396, 400–410 (1998).

    Article  CAS  Google Scholar 

  31. Huerta, F. J., Morallon, E. & Vazquez, J. L. Structural effects of adsorbed CN adlayers on the co-adsorption of OH at the Pt(111) surface in sulfuric acid medium. Surf. Sci. 431, L577–L581 (1999).

    Article  CAS  Google Scholar 

  32. Huerta, F., Morallon, E., Quijada, C., Vazquez, J. L. & Berlouis, L. E. A. Potential modulated reflectance spectroscopy of Pt(111) in acidic and alkaline media: cyanide adsorption. J. Electroanal. Chem. 463, 109–115 (1999).

    Article  CAS  Google Scholar 

  33. Cuesta, A. & Escudero, M. Electrochemical and FTIRS characterisation of NO adlayers on cyanide-modified Pt(111) electrodes: the mechanism of nitric oxide electroreduction on Pt. Phys. Chem. Chem. Phys. 10, 3628–3634 (2008).

    Article  CAS  Google Scholar 

  34. Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring-Pt(hkl) disk studies. J. Phys. Chem. 99, 3411–3415 (1995).

    Article  CAS  Google Scholar 

  35. Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring-disk Pt(hkl) studies. J. Phys. Chem. 100, 6715–6721 (1996).

    Article  Google Scholar 

  36. Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 144, 1591–1597 (1997).

    Article  CAS  Google Scholar 

  37. Strmcnik, D. et al. Relationship between the surface coverage of spectator species and the rate of electrocatalytic reactions. J. Phys. Chem. C 111, 18672–18678 (2007).

    Article  CAS  Google Scholar 

  38. Schmidt, T. J., Stamenkovic, V. R., Lucas, C., Markovic, N. M. & Ross, P. N. Surface processes and electrocatalysis on the Pt(hkl)/Bi-solution interface. Phys. Chem. Chem. Phys. 3, 3879–3890 (2001).

    Article  CAS  Google Scholar 

  39. Clavilier, J., Fernandez-Vega, A., Feliu, J. M. & Aldaz, A. Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms: Part I. Formic acid oxidation on the Pt (111)-Bi system. J. Electroanal. Chem. 258, 89–100 (1989).

    Article  CAS  Google Scholar 

  40. Llorca, M. J., Herrero, J. M., Feliu, J. M. & Aldaz, A. Formic acid oxidation on Pt(111) electrodes modified by irreversibly adsorbed selenium. J. Electroanal. Chem. 373, 217–225 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under contract no. DE-AC02-06CH11357, and by the DGI (Ministerio de Educación y Ciencia) under project CTQ2006-02109. M.E. acknowledges an FPI fellowship from the DGI and an accommodation grant at the Residencia de Estudiantes from the Madrid City Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angel Cuesta or Nenad M. Marković.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strmcnik, D., Escudero-Escribano, M., Kodama, K. et al. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nature Chem 2, 880–885 (2010). https://doi.org/10.1038/nchem.771

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing