Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases

Abstract

Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole–diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Representative fungal meroterpenoids and their biological activities.
Figure 2: Proposed biosynthetic pathway of pyripyropene A (9) in A. fumigatus.
Figure 3: The pyripyropene biosynthetic gene cluster (pyr cluster) identified from A. fumigatus.
Figure 4: Products isolated from coexpression experiments.
Figure 5: Functional analyses of Pyr4 in vitro.
Figure 6: A novel meroterpenoid (12) formed through HPhPO (11) from benzoic acid by the pyripyropene biosynthetic machinery.

References

  1. 1

    Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Geris, R. & Simpson, T. J. Meroterpenoids produced by fungi. Nat. Prod. Rep. 26, 1063–1097 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Ōmura, S., Tomoda, H., Kim, Y. K. & Nishida, H. Pyripyropenes, highly potent inhibitors of acyl-CoA : cholesterol acyltransferase produced by Aspergillus fumigatus. J. Antibiot. 46, 1168–1169 (1993).

    Article  Google Scholar 

  5. 5

    Tomoda, H., Kim, Y. K., Nishida, H., Masuma, R. & Ōmura, S. Pyripyropenes, novel inhibitors of acyl-CoA : cholesterol acyltransferase produced by Aspergillus fumigatus. J. Antibiot. 47, 148–153 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Das, A., Davis, M. A., Tomoda, H., Ōmura, S. & Rudel, L. L. Identification of the interaction site within acyl-CoA:cholesterol acyltransferase 2 for the isoform-specific inhibitor pyripyropene A. J. Biol. Chem. 283, 10453–10460 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Lee, S. S., Peng, F. C., Chiou, C. M. & Ling, K. H. NMR assignments of territrems A, B, and C and the structure of MB2, the major metabolite of territrem B by rat liver microsomal fraction. J. Nat. Prod. 55, 251–255 (1992).

    Article  Google Scholar 

  8. 8

    Kuno, F., Otoguro, K., Shiomi, K., Iwai, Y. & Ōmura, S. Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from Penicillium sp. FO-4259. J. Antibiot. 49, 742–747 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Chen, J. W., Luo, Y. L., Hwang, M. J., Peng, F. C. & Ling, K. H. Territrem B, a tremorgenic mycotoxin that inhibits acetylcholinesterase with a noncovalent yet irreversible binding mechanism. J. Biol. Chem. 274, 34916–34923 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Ridley, C. P. & Khosla, C. Synthesis and biological activity of novel pyranopyrones derived from engineered aromatic polyketides. ACS Chem. Biol. 2, 104–108 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Kuzuyama, T., Noel, J. P. & Richard, S. B. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435, 983–987 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Kawasaki, T. et al. Biosynthesis of a natural polyketide–isoprenoid hybrid compound, furaquinocin A: identification and heterologous expression of the gene cluster. J. Bacteriol. 188, 1236–1244 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Haagen, Y. et al. A gene cluster for prenylated naphthoquinone and prenylated phenazine biosynthesis in Streptomyces cinnamonensis DSM 1042. ChemBioChem 7, 2016–2027 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Winter, J. M. et al. Molecular basis for chloronium-mediated meroterpene cyclization. J. Biol. Chem. 282, 16362–16368 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Tomoda, H. et al. Biosynthesis of pyripyropene A. J. Org. Chem. 61, 882–886 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Nierman, W. C. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156 (2005).

  17. 17

    Fujii, I. et al. Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol. Gen. Genet. 253, 1–10 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Watanabe, A. et al. Product identification of polyketide synthase coded by Aspergillus nidulans wA gene. Tetrahedron Lett. 39, 7733–7736 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Watanabe, A. et al. Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Lett. 40, 91–94 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Fujii, I. et al. Heterologous expression and product identification of Colletotrichum lagenarium polyketide synthase encoded by the PKS1 gene involved in melanin biosynthesis. Biosci. Biotechnol. Biochem. 63, 1445–1452 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Fujii, I. et al. Enzymatic synthesis of 1,3,6,8-tetrahydroxynaphthalene solely from malonyl coenzyme A by a fungal iterative type I polyketide synthase PKS1. Biochemistry 39, 8853–8858 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Watanabe, A. et al. Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiol. Lett. 192, 39–44 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Fujii, I., Watanabe, A., Sankawa, U. & Ebizuka, Y. Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem. Biol. 8, 189–197 (2001).

  24. 24

    Fujii, I., Yoshida, N., Shimomaki, S., Oikawa, H. & Ebizuka, Y. An iterative type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regio-specific octa-methylation. Chem. Biol. 12, 1301–1309 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Kasahara, K., Fujii, I., Oikawa, H. & Ebizuka, Y. Expression of Alternaria solani PKSF generates a set of complex reduced-type polyketides with different carbon-lengths and cyclization. ChemBioChem 7, 920–924 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Jeong, T. S. et al. GERI-BP001 compounds, new inhibitors of acyl-CoA : cholesterol acyltransferase from Aspergillus fumigatus F37. J. Antibiot. 48, 751–756 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Heide, L. Prenyl transfer to aromatic substrates: genetics and enzymology. Curr. Opin. Chem. Biol. 13, 171–179 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Zhao, Y. J., Chng, S. S. & Loh, T. P. Lewis acid-promoted intermolecular acetal-initiated cationic polyene cyclizations. J. Am. Chem. Soc. 129, 492–493 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Saikia, S., Parker, E. J., Koulman, A. & Scott, B. Four gene products are required for the fungal synthesis of the indole–diterpene, paspaline. FEBS Lett. 580, 1625–1630 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Young, C., McMillan, L., Telfer, E. & Scott, B. Molecular cloning and genetic analysis of an indole–diterpene gene cluster from Penicillium paxilli. Mol. Microbiol. 39, 754–764 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Zhang, S., Monahan, B. J., Tkacz, J. S. & Scott, B. Indole–diterpene gene cluster from Aspergillus flavus. Appl. Environ. Microbiol. 70, 6875–6883 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Dairi, T. Studies on biosynthetic genes and enzymes of isoprenoids produced by actinomycetes. J. Antibiot. 58, 227–243 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Smith, A. B. III, Kinsho, T., Sunazuka, T. & Ōmura, S. Biomimetic total synthesis of the ACAT inhibitor (+)-pyripyropene E. Tetrahedron Lett. 37, 6461–6464 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Thoma, R. et al. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature 432, 118–122 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Erkel, G., Rether, J., Anke, T. & Sterner, O. S14-95, a novel inhibitor of the JAK/STAT pathway from a Penicillium species. J. Antibiot. 56, 337–343 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T.S. Jeong for providing the pyripyropene-producing strain, and K. Gomi and K. Kitamoto for their support in fungal transformation and expression. A part of this work was supported financially by a Grant-in-Aid for Young Scientists (B) (No. 21710222) from the Japan Society for the Promotion of Science (JSPS) and The Mochida Memorial Foundation for Medical and Pharmaceutical Research to T.K., a Grant-in-Aid for Scientific Research (A) (No. 20241049) to Y.E. from JSPS, a Grant-in-Aid for JSPS Fellows to T.I. from JSPS and a Grant-in-Aid for Scientific Research on Priority Areas ‘Applied Genomics’ to I.F. from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Affiliations

Authors

Contributions

T.I., Y.E. and T.K. conceived and designed the experiments, T.I., K.T. and Y.M. performed the experiments, T.I., K.T., Y.M., I.A., Y.E. and T.K. analysed the data, I.F. contributed the fungal expression system and T.I., Y.E. and T.K. co-wrote the paper.

Corresponding author

Correspondence to Tetsuo Kushiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2428 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Itoh, T., Tokunaga, K., Matsuda, Y. et al. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. Nature Chem 2, 858–864 (2010). https://doi.org/10.1038/nchem.764

Download citation

Further reading