Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces

Abstract

Water is the renewable, bulk chemical that nature uses to enable carbohydrate production from carbon dioxide. The dream goal of energy research is to transpose this incredibly efficient process and make an artificial device whereby the catalytic splitting of water is finalized to give a continuous production of oxygen and hydrogen. Success in this task would guarantee the generation of hydrogen as a carbon-free fuel to satisfy our energy demands at no environmental cost. Here we show that very efficient and stable nanostructured, oxygen-evolving anodes are obtained by the assembly of an oxygen-evolving polyoxometalate cluster (a totally inorganic ruthenium catalyst) with a conducting bed of multiwalled carbon nanotubes. Our bioinspired electrode addresses the one major challenge of artificial photosynthesis, namely efficient water oxidation, which brings us closer to being able to power the planet with carbon-free fuels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanostructured oxygen-evolving material.
Figure 2: Characterization of the composite 1@MWCNT.
Figure 3: Electroactive nanostructured ITO anodes.

Similar content being viewed by others

References

  1. Balzani, V., Credi, A. & Venturi, M. Photochemical conversion of solar energy. ChemSusChem 1, 26–58 (2008).

    Article  CAS  Google Scholar 

  2. Gray, H. B. Powering the planet with solar fuel. Nature Chem. 1, 7 (2009).

    Article  CAS  Google Scholar 

  3. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  4. Meyer, T. J. Catalysis: the art of splitting water. Nature 451, 778–779 (2008).

    Article  CAS  Google Scholar 

  5. Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 1040–1044 (2005).

    Article  CAS  Google Scholar 

  6. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  CAS  Google Scholar 

  7. Yano, J. et al. Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314, 821–825 (2006).

    Article  CAS  Google Scholar 

  8. Que, L. Jr & Tolman, W. B. Biologically inspired oxidation catalysis. Nature 455, 333–340 (2008).

    Article  CAS  Google Scholar 

  9. Rappaport, F., Guergova-Kuras, M., Nixon, P. J., Diner, B. A. & Lavergne, J. Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41, 8518–8527 (2002).

    Article  CAS  Google Scholar 

  10. Ananyev, G. & Dismukes, G. C. How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynth. Res. 84, 355–365 (2005).

    Article  CAS  Google Scholar 

  11. Sartorel, A. et al. Polyoxometalate embedding of a catalytically active tetra-ruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36]8–. J. Am. Chem. Soc. 130, 5006–5007 (2008).

    Article  CAS  Google Scholar 

  12. Geletii, Y. V. et al. An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew. Chem. Int. Ed. 47, 3896–3899 (2008).

    Article  CAS  Google Scholar 

  13. Sartorel, A. et al. Water oxidation at a tetraruthenate core stabilized by polyoxometalate ligands: experimental and computational evidence to trace the competent intermediates. J. Am. Chem. Soc. 131, 16051–16053 (2009).

    Article  CAS  Google Scholar 

  14. Liu, F. et al. Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg. Chem. 47, 1727–1752 (2008).

    Article  CAS  Google Scholar 

  15. Kanan, M. K. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  Google Scholar 

  16. Mola, J. et al. Ru-Hbpp-based water-oxidation catalysts anchored on conducting solid supports. Angew. Chem. Int. Ed. 47, 5830–5832 (2008).

    Article  CAS  Google Scholar 

  17. Brimblecombe, R., Swiegers, G. F., Dismukes, G. C. & Spiccia, L. Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew. Chem. Int. Ed. 47, 7335–7338 (2008).

    Article  CAS  Google Scholar 

  18. Cracknell, J. A., Vincent, K. A. & Armstrong, F. A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108, 2439–2461 (2008).

    Article  CAS  Google Scholar 

  19. Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

    Article  CAS  Google Scholar 

  20. Herrero, M. A. et al. Synthesis and characterization of a carbon nanotube–dendron series for efficient siRNA delivery J. Am. Chem. Soc. 131, 9843–9848 (2009).

    Article  CAS  Google Scholar 

  21. Mašek, K. et al. SRPES investigation of tungsten oxide in different oxidation states. Surf. Sci. 600, 1624–1627 (2006).

    Article  Google Scholar 

  22. Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, 1992).

    Google Scholar 

  23. Mackiewicz, N. et al. Supramolecular self-assembly of amphiphiles on carbon nanotubes: a versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. J. Am. Chem. Soc. 130, 8110–8111 (2008).

    Article  CAS  Google Scholar 

  24. Bi, L.-H. et al. Organo-ruthenium supported heteropolytungstates: synthesis, structure, electrochemistry, and oxidation catalysis. Inorg. Chem. 48, 10068–10077 (2009).

    Article  CAS  Google Scholar 

  25. Wightman, R. M. Probing cellular chemistry in biological systems with microelectrodes. Science 311, 1570–1574 (2006).

    Article  CAS  Google Scholar 

  26. Lutterman, D. A., Surendranath, Y. & Nocera, D. G. A self-healing oxygen-evolving catalyst. J. Am. Chem. Soc. 131, 3838–3839 (2009).

    Article  CAS  Google Scholar 

  27. Brimblecombe, R. et al. Sustained water oxidation by [Mn4O4]7+ core complexes inspired by oxygenic photosynthesis. Inorg. Chem. 48, 7269–7279 (2009).

    Article  CAS  Google Scholar 

  28. Tinker, L. L., McDaniel, N. D. & Bernhard, S. Progress towards solar-powered homogeneous water photolysis. J. Mater. Chem. 19, 3328–3337 (2009).

    Article  CAS  Google Scholar 

  29. Lacerda, L. et al. Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mat. 20, 225–230 (2008).

    Article  CAS  Google Scholar 

  30. Carano, M., Holt, K. B. & Bard, A. J. Scanning electrochemical microscopy 49. Gas-phase scanning electrochemical microscopy measurements with a Clark oxygen ultramicroelectrode. Anal. Chem. 75, 5071–5079 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Meneghetti for assistance with the RAMAN spectroscopy and discussion of the data. Financial support from Consiglio Nazionale delle Ricerche (CNR), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR, PRIN Contract No. 20085M27SS), University of Padova (Progetto Strategico 2008, HELIOS, prot. STPD08RCX) the European Science Foundation's Cooperation in Science and Technology D40 action, Fondazione Cassa di Risparmio in Bologna and the University of Bologna is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

F.M.T. performed the synthetic tasks, optimized the deposition protocol and coordinated the characterization and electrocatalytic experiments; A.S. and M.C. contributed to the design, synthesis and characterization of the POM interface; C.M. carried out the SEM and AFM, and analysed the data; B.R.G. performed the HRTEM and STEM analyses; H.A. carried out the SAXS and analysed the data; L.C., A.G. and P.P. performed the XPS and analysed the data; F.P., M.M., S.R. and M.I. performed and analysed the electrochemistry experiments; T.D.R. discussed and supervised the functionalization of carbon nanostructure; G. Scorrano helped with the design and discussion of the experiments; G. Scoles helped with the design and discussion of the experiments, and contributed to writing the manuscript; M.P. and M.B. planned and supervised the research, analysed the data and co-wrote the manuscript.

Corresponding authors

Correspondence to Maurizio Prato or Marcella Bonchio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2843 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toma, F., Sartorel, A., Iurlo, M. et al. Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nature Chem 2, 826–831 (2010). https://doi.org/10.1038/nchem.761

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing