Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly stable tetrathiafulvalene radical dimers in [3]catenanes

Abstract

Two [3]catenane ‘molecular flasks’ have been designed to create stabilized, redox-controlled tetrathiafulvalene (TTF) dimers, enabling their spectrophotometric and structural properties to be probed in detail. The mechanically interlocked framework of the [3]catenanes creates the ideal arrangement and ultrahigh local concentration for the encircled TTF units to form stable dimers associated with their discrete oxidation states. These dimerization events represent an affinity umpolung, wherein the inversion in electronic affinity replaces the traditional TTF-bipyridinium interaction, which is over-ridden by stabilizing mixed-valence (TTF)2•+ and radical-cation (TTF•+)2 states inside the ‘molecular flasks.’ The experimental data, collected in the solid state as well as in solution under ambient conditions, together with supporting quantum mechanical calculations, are consistent with the formation of stabilized paramagnetic mixed-valence dimers, and then diamagnetic radical-cation dimers following subsequent one-electron oxidations of the [3]catenanes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Species of interest.
Figure 2: [3]Catenane synthesis.
Figure 3: Cyclic voltammetry.
Figure 4: Stepwise oxidative dimerization mechanisms.
Figure 5: Solid-state structural analysis of the [3]catenane 3·4PF6, the TTF mixed-valence species 3·4PF6·ClO4 and the radical-cation dimer entity 3·2PF6·4ClO4.
Figure 6: Spectroscopic evidence detailing the formation of TTF-based dimers on stepwise oxidation of the [3]catenane 3·4PF6.
Figure 7: Steady-state continuous wave EPR spectroscopy.
Figure 8: Calculated energy landscape.

References

  1. 1

    Lewis, I. C. & Singer, L. J. Electron spin resonance of radical cations produced by oxidation of aromatic hydrocarbons with SbCl5 . J. Chem. Phys. 43, 2712–2727 (1965).

    CAS  Article  Google Scholar 

  2. 2

    Torrance, J. B., Scott, B. A., Welber, B., Kaufman, F. B. & Seiden, P. E. Optical properties of the radical cation tetrathiafulvalenium (TTF+) in its mixed-valence and mono-valence halide salts. Phys. Rev. B 19, 730–741 (1979).

    CAS  Article  Google Scholar 

  3. 3

    Bozio, R., Zanon, I., Girlando, A. & Pecile, C. Vibrational spectroscopy of molecular constitutents of one-dimensional organic conductors – tetrathiafulvalene (TTF), TTF+, and (TTF+)2 dimer. J. Chem. Phys. 71, 2282–2293 (1979).

    CAS  Article  Google Scholar 

  4. 4

    Rosokha, S. V. & Kochi, J. K. Molecular and electronic structures of the long-bonded π-dimers of tetrathiafulvalene cation-radical in intermolecular electron transfer and in (solid-state) conductivity. J. Am. Chem. Soc. 129, 828–838 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Tanaka, K., Kunita, T., Ishiguro, F., Naka, K. & Chujo, Y. Modulation of morphology and conductivity of mixed-valence tetrathiafulvalene nanofibers by coexisting organic acid anions. Langmuir 25, 6929–6933 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Porter, W. W. & Vaid, T. P. Isolation and characterisation of phenyl viologen as a radical cation and neutral molecule. J. Org. Chem. 70, 5028–5035 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Khodorkovsky, V. et al. Do π-dimers of tetrathiafulvalene cation radicals really exist at room temperature? Chem. Commun. 2736–2737 (2001).

  8. 8

    Sliwa, W., Bachowska, B. & Zelichowicz, N. Chemistry of viologens. Heterocycles 32, 2241–2273 (1991).

    CAS  Article  Google Scholar 

  9. 9

    Monk, P. M. S. The Viologens: Physiochemical properties, synthesis and applications of the salts of 4,4′-bipyridine (John Wiley & Sons, 1998).

    Google Scholar 

  10. 10

    Kosower, E. M. & Cotter, J. L. Stable free radicals II. The reduction of 1 methyl 4-cyanopyridinium ion to methylviologen cation radical. J. Am. Chem. Soc. 86, 5524–5527 (1964).

    CAS  Article  Google Scholar 

  11. 11

    Geuder, W., Hünig, S. & Suchy, A. Single and double bridged viologens and intramolecular pimerisation of their cation radicals. Tetrahedron 42, 1665–1677 (1986).

    CAS  Article  Google Scholar 

  12. 12

    Evans, A. G., Evans, J. C. & Baker, M. W. Study of bipyridyl radical cations. Part 5. Effect of structure on the dimerisation equilibrium. J. Chem. Soc. Perkin Trans. 2, 1787–1789 (1977).

    Article  Google Scholar 

  13. 13

    Claude-Montigny, B., Merlin, A. & Tondre, C. Microenvironment effects on the kinetics of electron-transfer reactions involving dithionite ions and viologens. 2. Stabilisation of ion radicals by polyelectrolytes and dimerisation kinetics of dialkyl viologens. J. Phys. Chem. 96, 4432–4437 (1992).

    CAS  Article  Google Scholar 

  14. 14

    Meisel, D., Mulac, W. A. & Metheson, M. S. Catalysis of methyl viologen radical reactions by polymer-stabilised gold sols. J. Phys. Chem. 85, 179–187 (1981).

    CAS  Article  Google Scholar 

  15. 15

    Furue, M. & Nozakura, S. Photoinduced 2-electron reduction of methyl viologen dimer by 2-propanol through intramolecular process and formation of viologen radical cation dimer. Chem. Lett. 9, 821–824 (1980).

    Article  Google Scholar 

  16. 16

    Bendikov, M., Wudl, F. & Perepichka, D. F., Tetrathiafulvalenes, oligoacenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem. Rev. 104, 4891–4945 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Canevet, D., Sallé, M., Zhang, G., Zhang, D. & Zhu, D. Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes. Chem. Commun. 2245–2269 (2009).

  18. 18

    Jeon, W. S., Kim, H. J., Lee, C. & Kim, K. Control of the stoichiometry of host-guest complexation by redox chemistry of guests: inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 1828–1829 (2002).

  19. 19

    Ziganshina, A. Y., Ko, Y. H., Jeon, W. S. & Kim, K. Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril. Chem. Commun. 806–807 (2004).

  20. 20

    Yoshizawa, M., Kumazawa, K. & Fujita, M. Room-temperature and solution-state observation of the mixed-valence cation radical dimer of tetrathiafulvalene [(TTF)2]+•, within a self-assembled cage. J. Am. Chem. Soc. 127, 13456–13457 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Spanggaard, H. et al. Multiple-bridged bis-tetrathiafulvalene: new synthetic protocols and spectroelectrochemical investigations. J. Am. Chem. Soc. 122, 9486–9494 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Chiang, P. T., Chen, N. C., Lai, C. C. & Chiu, S. H. Direct observation of mixed-valence and radical cation dimer states of tetrathiafulvalene in solution at room temperature: association and disassociation of molecular clip dimers under oxidative control. Chem. Eur. J. 14, 6546–6552 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Lyskawa, J. et al. Monitoring the formation of TTF dimers by Na+ complexation. Chem. Commun. 2233–2235 (2006).

  24. 24

    Lee, J. W. et al. Synthetic molecular machine based on reversible end-to-interior and end-to-end loop formation triggered by electrochemical stimuli. Chem. Asian J. 3, 1277–1283 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Trabolsi, A. et al. Redox-driven switching in pseudorotaxanes. New J. Chem. 33, 254–263 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Aprahamian, I., Olsen, J. C., Trabolsi, A. & Stoddart, J. F. Tetrathiafulvalene radical cation dimerisation in a bistable tripodal [4]rotaxane. Chem. Eur. J. 14, 3889–3895 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Hwang, I., Ziganshina, A. Y., Ko, Y. H., Yun, G. & Kim, K. A new three-way supramolecular switch based on redox-controlled interconversion of hetero- and homo guest pair inclusion inside a host molecule. Chem. Commun. 416–418 (2009).

  28. 28

    Song, C. & Swager, T. M. π-Dimer formation as the driving force for calix[4]arene-based molecular actuators. Org. Lett. 10, 3575–3578 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Takita, R., Song, C. & Swager, T. M. π-Dimer formation in an oligothiophene tweezer molecule. Org. Lett. 10, 5003–5005 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Trabolsi, A. et al. Radically enhanced molecular recognition. Nature Chem. 2, 42–49 (2009).

    Article  Google Scholar 

  31. 31

    Kim, K. et al. Functionalised cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. Engl. 18, 239–258 (1979).

    Article  Google Scholar 

  33. 33

    Sessler, J. L. et al. “Umpolung” photoinduced charge separation in an anion-bound supramolecular complex. J. Am. Chem. Soc. 130, 15256–15257 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K. & Rurack, K. The supramolecular chemistry of organic-inorganic hybrid materials. Angew. Chem. Int. Ed. 45, 5924–5948 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Odell, B. et al. Cyclobis(paraquat-p-phenylene)—a tetracationic multipurpose receptor. Angew. Chem. Int. Ed. 27, 1547–1550 (1988).

    Article  Google Scholar 

  36. 36

    Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Liu, Y. et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Saha, S., Leung, K. C. F., Nguyen, T. D., Stoddart, J. F. & Zink, J. I. Nanovalves. Adv. Funct. Mater. 17, 685–693 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Asakawa, M. et al. Cyclobis(paraquat-4,4′-biphenylene) – an organic molecular square. Chem. Eur. J. 2, 877–893 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Spruell, J. M. et al. A push-button molecular switch. J. Am. Chem. Soc. 131, 11571–11580 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Dichtel, W. R. et al. Kinetic and thermodynamic approaches for the efficient formation of mechanical bonds. Acc. Chem. Res. 41, 1750–1761 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Miljanić, O. Š. et al. Structural and co-conformational effects of alkyne-derived subunits in charged donor-acceptor [2]catenanes. J. Am. Chem. Soc. 129, 8236–8246 (2007).

    Article  Google Scholar 

  43. 43

    Eglinton, G. & Galbraith, A. R. Cyclic diynes. Chem. Ind. 737–738 (1956).

  44. 44

    Siemsen, P., Livingston, R. C. & Diederich, F. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed. 39, 2633–2657 (2000).

    Article  Google Scholar 

  45. 45

    Ünsal, Ö. & Godt, A. Synthesis of a [2]catenane with functionalities and 87-membered rings. Chem. Eur. J. 5, 1728–1733 (1999).

    Article  Google Scholar 

  46. 46

    Hamilton, D. G., Sanders, J. K. M., Davies, J. E., Clegg, W. & Teat, S. J. Neutral [2]catenanes from oxidative coupling of π-stacked components. Chem. Commun. 897–898 (1997).

  47. 47

    Dietrich-Buchecker, C. O., Khémiss, A. & Sauvage, J. P. High-yield synthesis of multiring copper(I) catenates by acetylenic oxidative coupling. J. Chem. Soc. Chem. Commun. 1376–1378 (1986).

  48. 48

    Gunter, M. J. & Farquhar, S. M. Neutral π-associated porphyrin [2]catenanes. Org. Biomol. Chem. 1, 3450–3457 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Sato, Y., Yamasaki, R. & Saito, S. Synthesis of [2]catenanes by oxidative intramolecular diyne coupling mediated by macrocyclic copper(I) complexes. Angew. Chem. Int. Ed. 48, 504–507 (2009).

    CAS  Article  Google Scholar 

  50. 50

    Raymo, F. M., Bartberger, M. D., Houk, K. N. & Stoddart, J. F. The magnitude of [C–H···O] hydrogen bonding in molecular and supramolecular assemblies. J. Am. Chem. Soc. 123, 9264–9267 (2001).

    CAS  Article  Google Scholar 

  51. 51

    Johnson, C. K. & Watson, C. R. Superstructure and modulation wave analysis for unidimensional conductor hepta(tetrathiafulvalene) pentaiodide. J. Chem. Phys. 64, 2271–2286 (1976).

    CAS  Article  Google Scholar 

  52. 52

    Garcia-Yoldi, I., Miller, J. S. & Novoa, J. J. Theoretical study of the electronic structure of [tetrathiafulvalene]22+ dimers and their long, intradimer multicenter bonding in solution and the solid state. J. Phys. Chem. A 113, 484–492 (2009).

    CAS  Article  Google Scholar 

  53. 53

    Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    CAS  Article  Google Scholar 

  54. 54

    Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theo. Chem. Acc. 120, 215–241 (2008).

    CAS  Article  Google Scholar 

  55. 55

    Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008).

    CAS  Article  Google Scholar 

  56. 56

    Benítez, D., Tkatchouk, E., Yoon, I., Stoddart, J. F. & Goddard, W. A. III Experimentally-based recommendations of density functionals for predicting properties in mechanically interlocked molecules. J. Am. Chem. Soc. 130, 14928–14929 (2008).

    Article  Google Scholar 

  57. 57

    Vácha, M., Půžová, T. & Kvíčalová, M. Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J. Exp. Biol. 212, 3473–3477 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Air Force Office of Scientific Research under the Multidisciplinary Research Program of the University Research Initiative (award number FA9550-07-1-0534, “Bioinspired Supramolecular Enzymatic Systems”) and the National Science Foundation under CHE-0924620. M.R.W. was supported by the National Science Foundation under Grant No. CHE-0718928. Proteomics and Informatic services were provided by the CBC-UIC Research Resources Center Proteomics and Informatics Services Facility, which was established by a grant from The Searle Funds at the Chicago Community Trust to the Chicago Biomedical Consortium. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817). J.M.S. acknowledges the National Science Foundation for a Graduate Research Fellowship and Northwestern University for a Presidential Fellowship. M.T.C. thanks the Link Foundation for a fellowship. G.C. thanks the EPSRC for support (GR/M32702, EP/E018211). G.C. thanks R. C. Hartley for his help regarding preliminary EPR measurements and Patrice Woisel for advice regarding the preliminary synthesis of cyclobis(paraquat-4,4′-biphenylene) and its complexation with TTF.

Author information

Affiliations

Authors

Contributions

J.M.S., A.C., G.C., and J.F.S. conceived the project and prepared the manuscript. J.M.S., A.C., G.B., and S.K.D. synthesized the different molecules studied in this work. R.S.F., A.A.S., M.A.O., and A.M.Z.S. were responsible for growing single-crystals and/or solving X-ray crystal structures. F.D., S.G.H., and S.T.C. were involved in the preliminary investigations of the complexation behaviour of 1 and TTF. G.M.R. was responsible for solving the X-ray structure of (TTF2 1). A.T. and A.C.F. were responsible for electrochemical studies. M.T.C., R.C., and M.R.W. were responsible for the EPR studies. J.L.S. was responsible for the mass spectrometry. D.C.F. was responsible for NMR investigations. D.B., E.T., and W.A.G.III performed DFT calculations. W.F.P. provided invaluable insights into the switching mechanisms.

Corresponding authors

Correspondence to Graeme Cooke or J. Fraser Stoddart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2101 kb)

Supplementary information

Crystallographic data for (TTF21)·4PF6 (CIF 51 kb)

Supplementary information

Crystallographic data for 2·4PF6·2.5MeCN (CIF 72 kb)

Supplementary information

Crystallographic data for 3·4PF6·3MeCN (CIF 35 kb)

Supplementary information

Crystallographic data for 3·4PF6·ClO4 (CIF 39 kb)

Supplementary information

Crystallographic data for 3·2PF6·4ClO4 (CIF 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spruell, J., Coskun, A., Friedman, D. et al. Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nature Chem 2, 870–879 (2010). https://doi.org/10.1038/nchem.749

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing