Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Supramolecular catalysis beyond enzyme mimics

Abstract

Supramolecular catalysis — the assembly of catalyst species by harnessing multiple weak intramolecular interactions — has, until recently, been dominated by enzyme-inspired approaches. Such approaches often attempt to create an enzyme-like 'active site' and have concentrated on reactions similar to those catalysed by enzymes themselves. Here, we discuss the application of supramolecular assembly to the more traditional transition metal catalysis and to small-molecule organocatalysis. The modularity of self-assembled multicomponent catalysts means that a relatively small pool of catalyst components can provide rapid access to a large number of catalysts that can be evaluated for industrially relevant reactions. In addition, we discuss how catalyst–substrate interactions can be tailored to direct substrates along particular reaction paths and selectivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supramolecular catalysis inspired by nature, and transition metal catalysis.
Figure 2: Multicomponent transition metal catalysts formed by self-assembly of programmed ligand building blocks.
Figure 3: Combinatorial catalysis using multicomponent supramolecular catalysts.
Figure 4: Multicomponent organocatalyst formed by self-assembly.
Figure 5: Functional catalyst–substrate interactions in self-assembled transition metal catalysts.

Similar content being viewed by others

References

  1. van Leeuwen, P. W. N. M. Supramolecular Catalysis (Wiley-VCH, 2008).

    Book  Google Scholar 

  2. Ringe, D. & Petsko, G. A. How enzymes work. Science 320, 1428–1429 (2009).

    Article  Google Scholar 

  3. Koblenz, T. S,. Wassenaar, J. & Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 37, 247–262 (2008).

    Article  CAS  Google Scholar 

  4. Pluth, M. D,. Bergman, R. G. & Raymond, K. N. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science 316, 85–88 (2007).

    Article  CAS  Google Scholar 

  5. Yoshizawa, M,. Tamura, M. & Fujita, M. Diels-Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).

    Article  CAS  Google Scholar 

  6. Knowles, W. S. Asymmetric hydrogenation. Acc. Chem. Res. 16, 106–112 (1983).

    Article  CAS  Google Scholar 

  7. Crabtree, R. H. Combinatorial and rapid screening approaches to homogeneous catalyst discovery and optimization. Chem. Commun. 1611–1616 (1999).

  8. Goudriaan, P. E,. van Leeuwen, P. W. N. M,. Birkholz, M. N. & Reek, J. N. H. Libraries of bidentate phosphorus ligands; synthesis strategies and application in catalysis. Eur. J. Inorg. Chem. 19, 2939–2958 (2008).

    Article  Google Scholar 

  9. Breit, B. & Seiche, W. Hydrogen bonding as a construction element for bidentate donor ligands in homogeneous catalysis: regioselective hydroformylation of terminal alkenes. J. Am. Chem. Soc. 125, 6608–6609 (2003).

    Article  CAS  Google Scholar 

  10. Kamer, P. C. J,. van Leeuwen, P. W. N. M. & Reek, J. N. H. Wide bite angle diphosphines: Xantphos ligands in transition metal complexes and catalysis. Acc. Chem. Res. 34, 895–904 (2001).

    Article  CAS  Google Scholar 

  11. Slagt, V. F,. van Leeuwen, P. W. N. M. & Reek, J. N. H. Bidentate ligands formed by self-assembly. Chem. Comm. 2474–2474 (2003).

  12. Kuil, M. et al. Rigid bis-zinc(II) salphen building blocks for the formation of template-assisted bidentate ligands and their application in catalysis. Dalton Trans. 2311–2320 (2007).

  13. Slagt, V. F,. van Leeuwen, P. W. N. M. & Reek, J. N. H. Multicomponent porphyrin assemblies as functional bidentate phosphite ligands for regioselective rhodium-catalyzed hydroformylation Angew. Chem. Int. Ed. 42, 5619–5623 (2003).

    Article  CAS  Google Scholar 

  14. Takacs, J. M,. Reddy, D. S,. Moteki, S. A,. Wu, D. & Palencia, H. Asymmetric catalysis using self-assembled chiral bidentate P,P-Ligands. J. Am. Chem. Soc. 126, 4494–4495 (2004).

    Article  CAS  Google Scholar 

  15. Rivillo, D. et al. Catalysis by design: wide-bite-angle diphosphines by assembly of ditopic ligands for selective rhodium-catalyzed hydroformylation. Angew. Chem. Int. Ed. 46, 7247–7250 (2007).

    Article  CAS  Google Scholar 

  16. Reetz, M. T. Combinatorial transition-metal catalysis: Mixing monodentate ligands to control enantio-, diastereo-, and regioselectivity. Angew. Chem. Int. Ed. 47 2556–2588 (2008).

    Article  CAS  Google Scholar 

  17. De Vries, J. G. & Lefort, L. The combinatorial approach to asymmetric hydrogenation: Phosphoramidite libraries, ruthenacycles, and artificial enzymes. Chem. Eur. J. 12, 4722–4734 (2006).

    Article  CAS  Google Scholar 

  18. Liu, Y. et al. Hydrogen bonding makes a difference in the rhodium-catalyzed enantioselective hydrogenation using monodentate phosphoramidites. J. Am. Chem. Soc. 128, 14212–14213 (2006).

    Article  CAS  Google Scholar 

  19. Sandee, A. J,. van der Burg, A. M. & Reek, J. N. H. UREAphos: supramolecular bidentate ligands for asymmetric hydrogenation. Chem. Commun. 864–866 (2007).

  20. Meeuwissen, J,. Kuil, M,. van der Burg, A. M,. Sandee, A. J. & Reek, J. N. H. Application of a supramolecular-ligand library for the automated search for catalysts for the asymmetric hydrogenation of industrially relevant substrates. Chem. Eur. J. 15, 10272–10279 (2009).

    Article  CAS  Google Scholar 

  21. Laungani, A. C. & Breit B. Supramolecular PhanePhos-analogous ligands through hydrogen-bonding for asymmetric hydrogenation. Chem. Commun. 844–846 (2008).

  22. Li, Y,. Feng, Y,. He, Y.-M,. Chen, F,. Pan, J. & Fan, Q.-H. Supramolecular chiral phosphorous ligands based on a [2]pseudorotaxane complex for asymmetric hydrogenation. Tetrahedron Lett. 49, 2878–2881 (2008).

    Article  CAS  Google Scholar 

  23. Breit, B. & Seiche, W. Self-assembly of bidentate ligands for combinatorial homogeneous catalysis based on an A–T base-pair model. Angew. Chem. Int. Ed. 44, 1640–1643 (2005).

    Article  CAS  Google Scholar 

  24. De Greef, M. & Breit, B. Self-assembled bidentate ligands for the nickel-catalyzed hydrocyanation of alkenes. Angew. Chem. Int. Ed. 48, 551–554 (2009).

    Article  CAS  Google Scholar 

  25. Chevallier, F. & Breit, B. Self-assembled bidentate ligands for Ru-catalyzed anti-Markovnikov hydration of terminal alkynes. Angew. Chem. Int. Ed. 45, 1599–1602 (2006).

    Article  CAS  Google Scholar 

  26. Weis, M,. Waloch, C,. Seiche, W. & Breit, B. Self-assembly of bidentate ligands for combinatorial homogeneous catalysis: asymmetric rhodium-catalyzed hydrogenation. J. Am. Chem. Soc. 128, 4188–4189 (2006).

    Article  CAS  Google Scholar 

  27. Slagt, V. F,. Röder, M,. Kamer, P. C. J,. van Leeuwen, P. W. N. M. & Reek, J. N. H. Supraphos: a supramolecular strategy to prepare bidentate ligands. J. Am. Chem. Soc. 126, 4056–4057 (2004).

    Article  CAS  Google Scholar 

  28. Goudriaan, P. E. et al. Synthesis of building blocks for the development of the supraphos ligand library and examples of their application in catalysis. Eur. J. Org. Chem. 36, 6079–6092 (2008).

    Article  Google Scholar 

  29. Jiang, X.-B. et al. Screening of a supramolecular catalyst library in the search for selective catalysts for the asymmetric hydrogenation of a difficult enamide substrate. Angew. Chem. Int. Ed. 45, 1223–1227 (2006).

    Article  CAS  Google Scholar 

  30. Jiang, X.-B,. van Leeuwen, P. W. N. M. & Reek, J. N. H. SUPRAphos-based palladium catalysts for the kinetic resolution of racemic cyclohexenyl acetate. Chem. Commun. 2287–2289 (2007).

  31. Kuil, M,. Goudriaan, P. E,. van Leeuwen, P. W. N. M. & Reek, J. N. H. Template-induced formation of heterobidentate ligands and their application in the asymmetric hydroformylation of styrene. Chem. Commun. 4679–4681 (2006).

  32. Takacs, J. M. et al. Rhodium-catalyzed asymmetric hydrogenation using self-assembled chiral bidentate ligands. Pure Appl. Chem. 78, 501–509 (2006).

    Article  CAS  Google Scholar 

  33. Moteki, S. A. & Takacs, J. M. Exploiting self-assembly for ligand-scaffold optimization: substrate-tailored ligands for efficient catalytic asymmetric hydroboration. Angew. Chem. Int. Ed. 47, 894–897 (2008).

    Article  CAS  Google Scholar 

  34. Pignataro, L. et al. Combinations of acidic and basic monodentate binaphtholic phosphites as supramolecular bidentate ligands for enantioselective Rh-catalyzed hydrogenations. Eur. J. Org. Chem. 2539–2547 (2009).

    Article  Google Scholar 

  35. Park, J,. Lang, K,. Abboud, K. A. & Hong, S. Self-assembled dinuclear cobalt(II)-salen catalyst through hydrogen-bonding and its application to enantioselective nitro-aldol (Henry) reaction. J. Am. Chem. Soc. 130, 16484–16485 (2008).

    Article  CAS  Google Scholar 

  36. Ohshima, S,. Tamura, N,. Nabeshima, T. & Yano, Y. A rate-accelerating noncovalently assembled system for thiazolium-catalysed oxidative decarboxylation of pyruvate in chloroform-acetonitile. Chem. Commun. 712–713 (1993).

  37. Ohsaki, K,. Konishi, K. & Aida, T. Supramolecular acid/base catalysis via multiple hydrogen bonding interaction. Chem. Commun. 1690–1691 (2002).

  38. Clarke, M. L. & Fuentes, J. A. Self-Assembly of organocatalysts: fine-tuning organocatalytic reactions. Angew. Chem. Int. Ed. 46, 930–933 (2007).

    Article  CAS  Google Scholar 

  39. Mandal, T. & Zhao, C.-G. Modularly designed organocatalytic assemblies for direct nitro-Michael addition reactions. Angew. Chem. Int. Ed. 47, 7714–7717 (2008).

    Article  CAS  Google Scholar 

  40. Uraguchi, D,. Ueki, Y. & Ooi, T. Chiral organic ion pair catalysts assembled through a hydrogen-bonding network. Science 326, 120–123 (2009).

    Article  CAS  Google Scholar 

  41. Šmejkal, T. & Breit, B. A supramolecular catalyst for regioselective hydroformylation of unsaturated carboxylic acids. Angew. Chem. Int. Ed. 47, 311–315 (2008).

    Article  Google Scholar 

  42. Šmejkal, T. & Breit, B. A Supramolecular catalyst for the decarboxylative hydroformylation of α,β-unsaturated carboxylic acids. Angew. Chem. Int. Ed. 47, 3946–3949 (2008).

    Article  Google Scholar 

  43. Diab, L,. Šmejkal, T,. Geier, J. & Breit, B. Supramolecular catalyst for aldehyde hydrogenation and tandem hydroformylation–hydrogenation. Angew. Chem. Int. Ed. 48, 8022–8026 (2009).

    Article  CAS  Google Scholar 

  44. Usui, I,. Schmidt, S,. Keller, M. & Breit, B. Allylation of N-heterocycles with allylic alcohols employing self-assembling palladium phosphane catalysts. Org. Lett. 10, 1207–1210 (2008).

    Article  CAS  Google Scholar 

  45. Šmejkal, T. & Breit, B. Self-assembled bidentate ligands for ruthenium-catalyzed hydration of nitriles. Organometallics 26, 2461–2464 (2007).

    Article  Google Scholar 

  46. Breuil, P.-A. R,. Patureau, F. W. & Reek, J. N. H. Singly hydrogen bonded supramolecular ligands for highly selective rhodium-catalyzed hydrogenation reactions. Angew. Chem. Int. Ed. 48, 2162–2165 (2009).

    Article  CAS  Google Scholar 

  47. Das, S,. Incarvito, C. D,. Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C-H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost N. H. Reek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meeuwissen, J., Reek, J. Supramolecular catalysis beyond enzyme mimics. Nature Chem 2, 615–621 (2010). https://doi.org/10.1038/nchem.744

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing