Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Triply interlocked covalent organic cages


Interlocked molecules comprise two or more separate components that are joined by ‘mechanical’ rather than covalent bonds. In other words, these molecular assemblies cannot be dissociated without the cleavage of one or more chemical bonds. Although recent progress has enabled the preparation of such topologies through coordination or templating interactions, three-dimensional interlocked covalent architectures remain difficult to prepare. Here, we present a template-free one-pot synthesis of triply interlocked organic cages. These 20-component dimers consist of two tetrahedral monomeric cages each built from four nodes and six linkers. The monomers exhibit axial chirality, which is recognized by their partner cage during the template-free interlocking assembly process. The dimeric cages also include two well-defined cavities per assembly, which for one of the systems studied led to the formation of a supramolecular host–guest chain. These interlocked organic molecules may prove useful as part of a toolkit for the modular construction of complex porous solids and other supramolecular assemblies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthesis of interlocked cages 3a–c.
Figure 2: Structures of triply interlocked cages.
Figure 3: Topology of triply interlocked cages.
Figure 4: Matched cage enantiomers interlock more effectively.
Figure 5: Characterization of the monomeric cage, 4a, and catenated cage dimer, 3a.
Figure 6: Matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectrum for a mixed cage dimer.


  1. 1

    Claessens, C. G. & Stoddart, J. F. Pi–pi interactions in self-assembly. J. Phys. Org. Chem. 10, 254–272 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Hubin, T. J. & Busch D. H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 200, 5–52 (2000).

    Article  Google Scholar 

  3. 3

    Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Fujita, M. Self-assembly of [2]catenanes containing metals in their backbones. Acc. Chem. Res. 32, 53–61 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Jager, R. & Vogtle, F. A new synthetic strategy towards molecules with mechanical bonds: nonionic template synthesis of amide-linked catenanes and rotaxanes. Angew. Chem. Int. Ed. 36, 930–944 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Meyer, C. D., Joiner, C. S. & Stoddart, J. F. Template-directed synthesis employing reversible imine bond formation. Chem. Soc. Rev. 36, 1705–1723 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Peters, A. J., Chichak, K. S., Cantrill, S. J. & Stoddart, J. F. Nanoscale Borromean links for real. Chem. Commun. 27, 3394–3396 (2005).

    Article  Google Scholar 

  9. 9

    Guo, J., Mayers, P. C., Breault, G. A. & Hunter, C. A. Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nature Chem. 2, 218–222 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Siegel, J. S. Chemical topology and interlocking molecules. Science 304, 1256–1258 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Pentecost, C. D. et al. A molecular Solomon link. Angew. Chem. Int. Ed. 46, 218–222 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Breault, G. A., Hunter, C. A. & Mayers, P. C. Supramolecular topology. Tetrahedron 55, 5265–5293 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Safarowsky, O., Windisch, B., Mohry, A. & Vogtle, F. Nomenclature for catenanes, rotaxanes, molecular knots and assemblies derived from these structural elements. J. Prakt. Chem. 342, 437–444 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. Nature 400, 52–55 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Westcott, A., Fisher, J., Harding, L. P., Rizkallah, P. & Hardie, M. J. Self-assembly of a 3-D triply interlocked chiral [2]catenane. J. Am. Chem. Soc. 130, 2950–2951 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Fukuda, M., Sekiya, R. & Kuroda, R. A quadruply stranded metallohelicate and its spontaneous dimerization into an interlocked metallohelicate. Angew. Chem. Int. Ed. 47, 706–710 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Li, Y., Mullen, K. M., Claridge, T. D. W., Costa, P. J., Felix, V. & Beer, P. D. Sulfate anion templated synthesis of a triply interlocked capsule. Chem. Commun. 46, 7134–7136 (2009).

    Article  Google Scholar 

  18. 18

    Cram, D. J. Cavitands—organic hosts with enforced cavities. Science 219, 1177–1183 (1983).

    CAS  Article  Google Scholar 

  19. 19

    Collet, A. Cyclotriveratrylenes and cryptophanes. Tetrahedron 43, 5725–5759 (1987).

    CAS  Article  Google Scholar 

  20. 20

    Leontiev, A. V. & Rudkevich, D. M. Encapsulation of gases in the solid state. Chem. Commun. 1468–1469 (2004).

  21. 21

    Liu, X. J., Liu, Y., Li, G. & Warmuth, R. One-pot, 18-component synthesis of an octahedral nanocontainer molecule. Angew. Chem. Int. Ed. 45, 901–904 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Tozawa, T. et al. Porous organic cages. Nature Mater. 8, 973–978 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Johnson, A. G., Leigh, D. A., Nezhat, L., Smart, J. P. & Deegan, M. D. Structurally diverse and dynamically versatile benzylic amide [2]catenanes assembled directly from commercially available precursors Angew. Chem. Int. Ed. 34, 1212–1216 (1995).

    Article  Google Scholar 

  24. 24

    Hamilton, D. G., Feeder, N., Teat, S. J. & Sanders, J. K. M. Reversible synthesis of pi-associated [2]catenanes by ring-closing metathesis: towards dynamic combinatorial libraries of catenanes. New J. Chem. 22, 1019–1021 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Haussmann, P. C. & Stoddart, J. F. Synthesizing interlocked molecules dynamically. Chem. Rec. 9, 136–154 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Au-Yeung, H. Y., Pantos, G. D. & Sanders, K. M. Amplifying different [2]catenanes in an aqueous donor–acceptor dynamic combinatorial library. J. Am. Chem. Soc. 131, 16030–16032 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Article  Google Scholar 

  28. 28

    Hosseini, M. W. & De Cian, A. Crystal engineering: molecular networks based on inclusion phenomena. Chem. Commun. 7, 727–733 (1998).

    Article  Google Scholar 

  29. 29

    Hosseini, M. W. Molecular tectonics: from simple tectons to complex molecular networks. Acc. Chem. Res. 38, 313–323 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Mecozzi, S. & Rebek, J. The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Roosma, J., Mes, T., Leclere, P., Palmans, A. R. A. & Meijer, E. W. Supramolecular materials from benzene-1,3,5-tricarboxamide-based nanorods. J. Am. Chem. Soc. 130, 1120–1121 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4097 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 64, 112–122 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Blatov, V. A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr CompComm. Newsletter 8, 4–38 (2006).

    Google Scholar 

  35. 35

    Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 36, 7–13 (2003).

    CAS  Article  Google Scholar 

Download references


The authors thank the Engineering and Physical Sciences Research Council (EPSRC) for financial support under grants EP/H000925/1 and EP/C511794/1. A.I.C. is a Royal Society Wolfson Research Merit Award holder. A.T. holds a Royal Society University Research Fellowship. We are grateful for the assistance of C. Blythe (HPLC/MS) and S. Higgins (GPC), as well as V. Boote and G. Smith of the Knowledge Centre for Materials Chemistry, University of Manchester (MALDI-TOF) .

Author information




A.C., T.H. and D.A. conceived and designed the experiments. The synthetic work was led by T.H. and also involved T.M. and X.W. Characterization and data analysis was carried out by T.H. (FTIR, NMR, TGA), J.J. (NMR, PXRD), J.B. and A.S. (SCXRD). A.S. analysed the number of potential positional isomers for the catenated cages. A.T. was responsible for the modelling work. T.H., A.S. and A.C. led the writing of the paper with input from all co-authors.

Corresponding author

Correspondence to Andrew I. Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2928 kb)

Supplementary information

Crystallographic data for compound 3a (CIF 14 kb)

Supplementary information

Crystallographic data for compound 3b (CIF 75 kb)

Supplementary information

Crystallographic data for compound 3c (CIF 33 kb)

Supplementary information

Crystallographic data for compound 4c with a mesitylene guest (CIF 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hasell, T., Wu, X., Jones, J. et al. Triply interlocked covalent organic cages. Nature Chem 2, 750–755 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing