Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Etching and narrowing of graphene from the edges

Abstract

Large-scale graphene electronics requires lithographic patterning of narrow graphene nanoribbons for device integration. However, conventional lithography can only reliably pattern ~20-nm-wide GNR arrays limited by lithography resolution, while sub-5-nm GNRs are desirable for high on/off ratio field-effect transistors at room temperature. Here, we devised a gas phase chemical approach to etch graphene from the edges without damaging its basal plane. The reaction involved high temperature oxidation of graphene in a slightly reducing environment in the presence of ammonia to afford controlled etch rate (1 nm min−1). We fabricated ~20–30-nm-wide graphene nanoribbon arrays lithographically, and used the gas phase etching chemistry to narrow the ribbons down to <10 nm. For the first time, a high on/off ratio up to ~104 was achieved at room temperature for field-effect transistors built with sub-5-nm-wide graphene nanoribbon semiconductors derived from lithographic patterning and narrowing. Our controlled etching method opens up a chemical way to control the size of various graphene nano-structures beyond the capability of top-down lithography.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gas-phase chemical etching and narrowing of graphene sheets.
Figure 2: Lithographically patterned GNR arrays and junctions.
Figure 3: Gas-phase chemical narrowing of GNRs.
Figure 4: FETs from lithographically patterned and chemically narrowed GNRs and parallel GNR arrays.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  3. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semidonductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  4. Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    Article  Google Scholar 

  5. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  CAS  Google Scholar 

  6. Bai, J., Duan, X. & Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etching mask. Nano Lett. 9, 2083–2087 (2009).

    Article  CAS  Google Scholar 

  7. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy bandgap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  8. Chen, Z., Lin, Y.-M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  9. Pomomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    Article  Google Scholar 

  10. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    Article  CAS  Google Scholar 

  11. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 017954–017961 (1996).

    Article  CAS  Google Scholar 

  12. Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  13. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article  CAS  Google Scholar 

  14. Wang, X., Tabakman, S. M. & Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152–8153 (2008).

    Article  CAS  Google Scholar 

  15. Lee, S. M., Lee, Y. H., Hwang, Y. G., Hahn, J. R. & Kang, H. Defected-induced oxidation of graphite. Phys. Rev. Lett. 82, 217–220 (1999).

    Article  CAS  Google Scholar 

  16. Hahn, J. R., Kang, H., Lee, S. M. & Lee, Y. H. Mechanistic study of defect-induced oxidation of graphite. J. Phys. Chem. B 103, 9944–9951 (1999).

    Article  CAS  Google Scholar 

  17. Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and bandgap opening. ACS Nano 2, 2301–2305 (2008).

    Article  CAS  Google Scholar 

  18. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article  Google Scholar 

  19. Li, X. et al. Simultaneous nitrogen-doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939–15944 (2009).

    Article  CAS  Google Scholar 

  20. Yan, Q. et al. Intrinsic current−voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 7, 1469–1473 (2007).

    Article  CAS  Google Scholar 

  21. OuYang, F., Xiao, J., Guo, R., Zhang, H. & Xu, H. Transport properties of T-shaped and cross junctions based on graphene nanoribbons. Nanotechnology 20, 055202 (2009).

    Article  Google Scholar 

  22. Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  23. Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).

    Article  CAS  Google Scholar 

  24. Zhao, P., Choudhury, M., Mohanram, K. & Guo, J. Computational model of edge effects in graphene nanoribbon transistors. Nano Res. 1, 395–402 (2008).

    Article  CAS  Google Scholar 

  25. Yoon, Y. & Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 073103 (2007).

    Article  Google Scholar 

  26. Cresti, A. et al. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 1, 361–394 (2008).

    Article  CAS  Google Scholar 

  27. Ci, L. et al. Controlled nanocutting of graphene. Nano Res. 1, 116–122 (2008).

    Article  CAS  Google Scholar 

  28. Campos, L. C., Manfrinato, V. R., Sanchez-Yamagishi, J. D., Kong, J. & Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 9, 2600–2604 (2009).

    Article  CAS  Google Scholar 

  29. Datta, S. S., Strachan, D. R., Khamis, S. M. & Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 8, 1912–1915 (2008).

    Article  CAS  Google Scholar 

  30. Nemes-Incze, P., Magda, G., Kamaras, K. & Biro, L. P. Crystallographically selective nanopatterning of graphene on SiO2 . Nano Res. 3, 110–116 (2010).

    Article  CAS  Google Scholar 

  31. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  32. Hu, W., Sarveswaran, K., Lieberman, M. & Bernstein, G. H. Sub-10-nm electron beam lithography using cold development of poly(methylmethacrylate). J. Vac. Sci. Technol. B 22, 1711–1716 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Intel, the MARCO MSD Center and Graphene MURI (the Office of Naval Research). The authors are grateful to J.W. Conway from the Stanford Nanofabrication Facility for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.W. and H.D. conceived and designed the experiments. X.W. performed the experiments and analysed the data. X.W. and H.D. co-wrote the paper. Both authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hongjie Dai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2890 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Dai, H. Etching and narrowing of graphene from the edges. Nature Chem 2, 661–665 (2010). https://doi.org/10.1038/nchem.719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing