Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible dioxygen binding in solvent-free liquid myoglobin

Abstract

The ensemble of forces that stabilize protein structure and facilitate biological function are intimately linked with the ubiquitous aqueous environment of living systems. As a consequence, biomolecular activity is highly sensitive to the interplay of solvent–protein interactions, and deviation from the native conditions, for example by exposure to increased thermal energy or severe dehydration, results in denaturation and subsequent loss of function. Although certain enzymes can be extracted into non-aqueous solvents without significant loss of activity, there are no known examples of solvent-less (molten) liquids of functional metalloproteins. Here we describe the synthesis and properties of room-temperature solvent-free myoglobin liquids with near-native structure and reversible dioxygen binding ability equivalent to the haem protein under physiological conditions. The realization of room-temperature solvent-free myoglobin liquids with retained function presents novel challenges to existing theories on the role of solvent molecules in structural biology, and should offer new opportunities in protein-based nanoscience and bionanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solvent-free liquid Mb.
Figure 2: Characterization of solvent-free [C–Mb][S1] nanoconstructs and melts.
Figure 3: Gas molecule binding to solvent-free [C–Mb][S1] liquids at room temperature.

Similar content being viewed by others

References

  1. Rariy, R. V. & Klibanov, A. M. Correct protein folding in glycerol. Proc. Natl Acad. Sci. USA 94, 13520–13523 (1997).

    Article  CAS  Google Scholar 

  2. Knubovets, T., Osterhout, J. J., Connolly, P. J. & Klibanov, A. M. Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proc. Natl Acad. Sci. USA 96, 1262–1267 (1999).

    Article  CAS  Google Scholar 

  3. Clark, D. S. Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water. Phil. Trans. R. Soc. Lond. B 359, 1299–1307 (2004).

    Article  CAS  Google Scholar 

  4. van Rantwijk, F. & Sheldon, R. A. Biocatalysis in ionic liquids. Chem. Rev. 107, 2757–2785 (2007).

    Article  CAS  Google Scholar 

  5. Kikkawa, S., Takahashi, K., Katada, T. & Inada, Y. Esterification of chiral secondary alcohols with fatty-acid in organic-solvents by polyethylene glycol-modified lipase. Biochem. Int. 19, 1125–1131 (1989).

    CAS  PubMed  Google Scholar 

  6. Kodera, Y., Nishimura, H., Matsushima, A., Hiroto, M. & Inada, Y. Lipase made active in hydrophobic media by coupling with polyethylene-glycol. J. Am. Oil Chem. Soc. 71, 335–338 (1994).

    Article  CAS  Google Scholar 

  7. Basri, M. et al. Synthesis of fatty esters by polyethylene glycol-modified lipase. J. Chem. Technol. Biot. 64, 10–16 (1995).

    Article  CAS  Google Scholar 

  8. Okahata, Y. & Ijiro, K. A lipid-coated lipase as a new catalyst for triglyceride synthesis in organic solvents. Chem. Commun. 1392–1394 (1988).

  9. Okahata, Y. & Ijiro, K. Preparation of a lipid-coated lipase and catalysis of glyceride ester syntheses in homogeneous organic solvents. Bull. Chem. Soc. Jpn 65, 2411–2420 (1992).

    Article  CAS  Google Scholar 

  10. Mattos, C. & Ringe, D. Proteins in organic solvents. Curr. Opin. Struct. Biol. 11, 761–764 (2001).

    Article  CAS  Google Scholar 

  11. Liu, L., Bagal, D., Kitova, E. N., Schnier, P. D. & Klassen, J. S. Hydrophobic protein–ligand interactions preserved in the gas phase. J. Am. Chem. Soc. 131, 15980–15981 (2009).

    Article  CAS  Google Scholar 

  12. Perriman, A. W., Colfen, H., Hughes, R. W., Barrie, C. L. & Mann, S. Solvent-free protein liquids and liquid crystals. Angew. Chem. Int. Ed. 48, 6242–6246 (2009).

    Article  CAS  Google Scholar 

  13. Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).

    Article  CAS  Google Scholar 

  14. Wong, K. K. W. & Mann, S. Biomimetic synthesis of cadmium sulphide–ferritin nanocomposites. Adv. Mater. 8, 928–932 (1996).

    Article  CAS  Google Scholar 

  15. Costantino, H. R., Curley, J. G. & Hsu, C. C. Determining the water sorption monolayer of lyophilized pharmaceutical proteins. J. Pharm. Sci. 82, 1390–1393 (1997).

    Article  Google Scholar 

  16. Pauling, L. The adsorption of water by proteins. J. Am. Chem. Soc. 67, 555–557 (1945)

    Article  CAS  Google Scholar 

  17. Goormaghtigh, E., Ruysschaert, J. M. & Raussens, V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys. J. 90, 2946–2957 (2006).

    Article  CAS  Google Scholar 

  18. Ishida, K. P. & Griffiths, P. R. Comparison of the amide-I/II intensity ratio of solution and solid-state proteins sampled by transmission, attenuated total reflectance, and diffuse reflectance spectrometry. Appl. Spectrosc. 47, 584–589 (1993).

    Article  CAS  Google Scholar 

  19. Pelton, J. T. & McLean, L. R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 277, 167–176 (2000).

    Article  CAS  Google Scholar 

  20. Li, Q. C. & Mabrouk, P. A. Spectroscopic and electrochemical studies of horse myoglobin in dimethyl sulfoxide. Phil. Trans. R. Soc. Lond. B 8, 83–94 (2003).

    Google Scholar 

  21. Ikedasaito, M. et al. Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants. J. Biol. Chem. 267, 22843–22852 (1992).

    CAS  Google Scholar 

  22. Antonini, E. & Brunori, M. Hemoglobin and myoglobin in their reactions with ligands (eds Neuberger, A. & Tatum, E. L.) (North Holland Publishing Company, 1971).

  23. Schenkman, K. A., Marble, D. R., Burns, D. H. & Feigl, E. O. Myoglobin oxygen dissociation by multiwavelength spectroscopy. J. Appl. Physiol. 82, 86–92 (1997).

    Article  CAS  Google Scholar 

  24. Andersen, K. K., Westh, P. & Otzen, D. E. Global study of myoglobin–surfactant interactions. Langmuir 24, 399–407 (2008).

    Article  CAS  Google Scholar 

  25. Andersen, K. K. et al. The role of decorated SDS micelles in sub-CMC protein denaturation and association. J. Mol. Biol. 391, 207–226 (2009).

    Article  CAS  Google Scholar 

  26. Lee, H., de Vries, A. H., Marrink, S. J. & Pastor, R. W. A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. J. Phys. Chem. B 113, 13186–13194 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank EPSRC (Platform grant no. EP/C518748/1) for financial support, A. Völkel for performing the analytical ultracentrifugation experiments, and J. Lewis for performing the high-speed macro photography.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and A.W.P. contributed to the project's inception. A.P.S.B. and A.W.P. designed the experiments and performed the synthesis. H.C. performed the analysis on the analytical ultracentrifugation results, N.T., G.R.O., A.P.S.B. and A.W.P. conducted the ligand binding studies, and S.M. and A.W.P. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Stephen Mann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4819 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perriman, A., Brogan, A., Cölfen, H. et al. Reversible dioxygen binding in solvent-free liquid myoglobin. Nature Chem 2, 622–626 (2010). https://doi.org/10.1038/nchem.700

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing