Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A layered ionic crystal of polar Li@C60 superatoms

Abstract

If the physical properties of C60 fullerene molecules can be controlled in C60 products already in use in various applications, the potential for industrial development will be significant. Encapsulation of a metal atom in the C60 fullerene molecule is a promising way to control its physical properties. However, the isolation of C60-based metallofullerenes has been difficult due to their insolubility. Here, we report the complete isolation and determination of the molecular and crystal structure of polar cationic Li@C60 metallofullerene. The physical and chemical properties of Li@C60 cation are compared with those of pristine C60. It is found that the lithium cation is located at off-centre positions in the C60Ih cage interior and that the [Li+@C60] salt has a unique two-dimensional structure. The present method of purification and crystallization of C60-based metallofullerenes provides a new C60 fullerene material that contains a metal atom.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LDI–TOF mass spectra and NMR spectra of [Li@C60](SbCl6).
Figure 2: Cyclic (CVs) and differential pulse voltammograms (DPVs) of [Li@C60](SbCl6), C60 and (Et4N)(SbCl6) in the region of their reduction (0 to −3.0 V versus ferrocene (Fc)/ferrocenium (Fc+)).
Figure 3: MEM charge density distributions of a Li@C60 cation in [Li@C60](SbCl6) crystal.
Figure 4: Structure of [Li+@C60].
Figure 5: Layered crystal structure of [Li@C60](SbCl6).

Similar content being viewed by others

References

  1. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  2. Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater. 4, 864–868 (2005).

    Article  CAS  Google Scholar 

  3. Dodabalapur, A., Katz, H. E., Torsi, L. & Haddon, R. C. Organic heterostructure field-effect transistors. Science 269, 1560–1562 (1995).

    Article  CAS  Google Scholar 

  4. Meijer, E. J. et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater. 2, 678–682 (2003).

    Article  CAS  Google Scholar 

  5. Heath, J. R. et al. Lanthanum complexes of spheroidal carbon shells. J. Am. Chem. Soc. 107, 7779–7780 (1985).

    Article  CAS  Google Scholar 

  6. Diener, M. D. & Alford, J. M. Isolation and properties of small-bandgap fullerenes. Nature 393, 668–671 (1998).

    Article  CAS  Google Scholar 

  7. Ogawa, T., Sugai, T. & Shinohara, H. Isolation and characterization of Er@C60 . J. Am. Chem. Soc. 122, 3538–3539 (2000).

    Article  CAS  Google Scholar 

  8. Inoue, T. et al. Electronic structure of Eu@C60 studied by XANES and UV–VIS absorption spectra. Chem. Phys. Lett. 316, 381–386 (2000).

    Article  CAS  Google Scholar 

  9. Chai, Y. et al. Fullerenes with metals inside. J. Phys. Chem. 95, 7564–7568 (1991).

    Article  CAS  Google Scholar 

  10. Bolskar, R. D. et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 125, 5471–5478 (2003).

    Article  CAS  Google Scholar 

  11. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Solid C60: a new form of carbon. Nature 347, 354–358 (1990).

    Article  Google Scholar 

  12. Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 63, 843–892 (2000).

    Article  CAS  Google Scholar 

  13. Lee, J. et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415, 1005–1008 (2002).

    Article  CAS  Google Scholar 

  14. Shimada, T. et al. Ambipolar field-effect transistor behavior of Gd@C82 metallofullerene peapods. Appl. Phys. Lett. 81, 4067–4069 (2002).

    Article  CAS  Google Scholar 

  15. Tellgmann, R. et al. Endohedral fullerene production. Nature 382, 407–408 (1996).

    Article  CAS  Google Scholar 

  16. Campbell, E. E. B., Tellgmann, R., Krawez, N. & Hertel, I. V. Production and LDMS characterisation of endohedral alkali–fullerene films. J. Phys. Chem. Solids 58, 1763–1769 (1997).

    Article  CAS  Google Scholar 

  17. Gromov, A., Krätschmer, W., Krawez, N., Tellgmann, R. & Campbell, E. E. B. Extraction and HPLC purification of Li@C60/70 . Chem. Commun. 2003–2004 (1997).

  18. Kitaura, R. & Shinohara, H. Carbon-nanotube-based hybrid materials: nanopeapods. Chem. Asian J. 1, 646–655 (2006).

    Article  CAS  Google Scholar 

  19. Komatsu, K., Murata, M. & Murata, Y. Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307, 238–240 (2005).

    Article  CAS  Google Scholar 

  20. Saunders, M., Cross, R. J., Jiménez-Vázquez, H. A., Shimshi, R. & Khong, A. Noble gas atoms inside fullerenes. Science 271, 1693–1697 (1996).

    Article  CAS  Google Scholar 

  21. Kato, T. et al. Electronic absorption of the radical anions and cations of fullerenes: C60 and C70 . Chem. Phys. Lett. 180, 446–450 (1991).

    Article  CAS  Google Scholar 

  22. Pavanello, M., Jalbout, A. F., Trzaskowski, B. & Adamowicz, L. Fullerene as an electron buffer: charge transfer in Li@C60 . Chem. Phys. Lett. 442, 339–343 (2007).

    Article  CAS  Google Scholar 

  23. Takata, M. et al. Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82 . Nature 377, 46–49 (1995).

    Article  CAS  Google Scholar 

  24. Yamada, M. et al. Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J. Am. Chem. Soc. 127, 14570–14571 (2005).

    Article  CAS  Google Scholar 

  25. Wakahara, T. et al. Two-dimensional hopping motion of encapsulated La atoms in silylated La2@C80 . Chem. Commun. 2680–2682 (2007).

  26. Eklund, P. C., Zhou, P., Wang, K.-A., Dresselhaus, G. & Dresselhaus, M. S. Optical phonon modes in solid and doped C60 . J. Phys. Chem. Solids 53, 1391–1413 (1992).

    Article  CAS  Google Scholar 

  27. Mitch, M. G. & Lannin, J. S. Raman scattering in K4C60 and Rb4C60 fullerenes. Phys. Rev. B 51, 6784–6787 (1995).

    Article  CAS  Google Scholar 

  28. Wen, C. et al. Electrical conductivity of a pure C60 single crystal. Appl. Phys. Lett. 61, 2162–2163 (1992).

    Article  CAS  Google Scholar 

  29. Yang, C.-M., Liao, J.-L. & Chiu, K.-C. Diffusion of O2 in C60 crystal by measuring the decay of electrical conductivity. J. Appl. Phys. 96, 1934–1938 (2004).

    Article  CAS  Google Scholar 

  30. Dunlap, B. I., Ballester, J. L. & Schmidt, P. P. Interactions between C60 and endohedral alkali atoms. J. Phys. Chem. 96, 9781–9787 (1992).

    Article  CAS  Google Scholar 

  31. Slanina, Z., Uhlík, F., Lee, S.-L., Adamowicz, L. & Nagase, S. MPWB1K calculations of stepwise encapsulations: Lix@C60 . Chem. Phys. Lett. 463, 121–123 (2008).

    Article  CAS  Google Scholar 

  32. Yakigaya, K. et al. Superconductivity of doped Ar@C60 . New J. Chem. 31, 973–979 (2007).

    Article  CAS  Google Scholar 

  33. Kohama, Y. et al. Rotational sublevels of an ortho-hydrogen molecule encapsulated in an isotropic C60 cage. Phys. Rev. Lett. 103, 073001 (2009).

    Article  Google Scholar 

  34. Heiney, P. A. et al. Orientatonal ordering transition in solid C60 . Phys. Rev. Lett. 66, 2911–2914 (1991).

    Article  CAS  Google Scholar 

  35. Yasutake, Y., Shi, Z., Okazaki, T., Shinohara, H. & Majima, Y. Single molecular orientation switching of an endohedral metallofullerene. Nano Lett. 5, 1057–1060 (2005).

    Article  CAS  Google Scholar 

  36. Nuttall, C. J., Hayashi, Y., Yamazaki, K., Mitani, T. & Iwasa, Y. Dipole dynamics in the endohedral metallofullerene La@C82 . Adv. Mater. 14, 293–296 (2002).

    Article  CAS  Google Scholar 

  37. Hirata, T., Hatakeyama, R., Mieno, T. & Sato, N. Production and control of K–C60 plasma for material processing. J. Vac. Sci. Technol. A14, 615–618 (1996).

    Article  Google Scholar 

  38. Tsuchiya, T. et al. Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem. Mater. 16, 4343–4346 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Scientific Research (A) (20244059) and Scientific Research on Priority Areas (19051015). This work was also supported by the Ministry of Economy, Trade and Industry, the Miyagi Prefectural Government, Sendai city, and the Japan Science and Technology Agency. We are grateful to R. Hatakeyama for help in the construction and operation of the plasma reactor, Y. Takabayashi for fruitful discussions, and T. Kawaguchi and H. Ikuta for the resistivity measurement. We also acknowledge the Technical Division, School of Engineering, and Analytical Center for Giant Molecules, Graduate School of Science of Tohoku University for developing the metallofullerene synthesis apparatus and for spectroscopic and analytical measurements. The synthesis and crystallization of [Li@C60](SbCl6) were carried out in Sendai, and the XRD and analyses were performed in SPring-8 and Nagoya, respectively. The SR experiments were performed at SPring-8 with approval of the Japan Synchrotron Radiation Research Institute (JASRI).

Author information

Authors and Affiliations

Authors

Contributions

H. Sawa, H. Shinohara, H.T. and Y.K. were responsible for designing and coordinating this study. S.A., E.N. and H. Sawa interpreted and discussed the results and carried out single-crystal XRD measurements and structural analysis. K.K., K.Y. and Y.K. carried out the synthesis. H.O., T.S., T.K. and S.I. carried out purification, crystallization, LDI–TOF mass and NMR measurements. H. Shinohara, Y.M., R.K., Y.O., K.O. and S.O. were involved in experiments and discussions. M.T. and K.S. carried out the SR-XRD measurements. All authors commented on the paper, which was written by H. Sawa and H.T.

Corresponding authors

Correspondence to Hiroshi Sawa or Hiromi Tobita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1841 kb)

Supplementary information

Crystallographic information for compound 1 (CIF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoyagi, S., Nishibori, E., Sawa, H. et al. A layered ionic crystal of polar Li@C60 superatoms. Nature Chem 2, 678–683 (2010). https://doi.org/10.1038/nchem.698

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.698

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing